Citation: | Wang Jiawei, Wu Wei, Ma Yueting, Huang Libing, Dong Honggang. Microstructure and mechanical properties of 5083 aluminum alloy with MIG welding[J]. WELDING & JOINING, 2022, (11). DOI: 10.12073/j.hj.20220112002 |
[1] |
Huang L J, Hua X M, Wu D S, et al. Microstructural characterization of 5083 aluminum alloy thick plates welded with GMAW and twin wire GMAW processes[J]. The International Journal of Advanced Manufacturing Technology, 2017, 93(5-8): 1809-1817.
|
[2] |
Yan J F, Hodge A M. Study of β precipitation and layer structure formation in Al 5083: The role of dispersoids and grain boundaries[J]. Journal of Alloys and Compounds, 2017, 703: 242-250.
|
[3] |
Yi G S, Sun B H, Poplawsky J D, et al. Investigation of pre-existing particles in Al 5083 alloys[J]. Journal of Alloys and Compounds, 2018, 740: 461-469.
|
[4] |
Samiuddin M, Li J L, Taimoor M, et al. Investigation on the process parameters of TIG-welded aluminum alloy through mechanical and microstructural characterization[J]. Defence Technology, 2021, 17(4): 1234-1248.
|
[5] |
Al-Roubaiy A O, Nabat S M, Batako A D. An investigation into friction stir welding of aluminium alloy 5083-H116 similar joints[J]. Materials Today: Proceedings, 2020, 22(4): 2140-2152.
|
[6] |
Gungor B, Kaluc E, Taban E, et al. Mechanical, fatigue and microstructural properties of friction stir welded 5083-H111 and 6082-T651 aluminum alloys[J]. Materials and Design, 2013, 56: 84-90.
|
[7] |
Vasu K, Chelladurai H, Ramaswamy A, et al. Effect of fusion welding processes on tensile properties of armor grade, high thickness, non-heat treatable aluminium alloy joints[J]. Defence Technology, 2019, 15(3): 353-362.
|
[8] |
Cunha T V D, Voigt A L, Bohórquez C E N. Analysis of mean and RMS current welding in the pulsed TIG welding process[J]. Journal of Materials Processing Technology, 2016, 231: 449-455.
|
[9] |
Qing G B, Dong H G, Yang J, et al. Texture and mechanical properties of metal inert gas welded 6082-T651 aluminum alloy joints[J]. China Welding, 2021, 30(1): 1-12.
|
[10] |
Mercan E, Ayan Y, Kahraman N. Investigation on joint properties of AA5754 and AA6013 dissimilar aluminum alloys welded using automatic GMAW[J]. Engineering Science and Technology, an International Journal, 2020, 23(4): 723-731.
|
[11] |
Ma M Y, Lai R L, Wang B, et al. Effect of weld reinforcement on tensile and fatigue properties of 5083 aluminum metal inert gas (MIG) welded joint: Experiments and numerical simulations[J]. International Journal of Fatigue, 2021, 144: 106046.
|
[12] |
Jia Z Y, Zhang P L, Yu Z H, et al. Effect of pulse shaping on solidification process and crack in 5083 aluminum alloy by pulsed laser welding[J]. Optics and Laser Technology, 2021, 134: 106608.
|
[13] |
Huang Y, Shen C, Hua X M, et al. Effects of Mg content on keyhole behaviour during deep penetration laser welding of Al-Mg alloys[J]. Optics and Laser Technology, 2020, 125: 106056.
|
[14] |
Choi D H, Ahn B W, Jung S B, et al. Behavior of β phase (Al3Mg2) in AA 5083 during friction stir welding[J]. Intermetallics, 2013, 35: 120-127.
|
[15] |
Umar M, Sathiya P. Influence of melting current pulse duration on microstructural features and mechanical properties of AA5083 alloy weldments[J]. Materials Science & Engineering A, 2019, 746: 167-178.
|
[16] |
Zhu C X, Tang X H, He Y, et al. Characteristics and formation mechanism of sidewall pores in NG-GMAW of 5083 Al-alloy[J]. Journal of Materials Processing Technology, 2016, 238: 274-283.
|
[17] |
Li S R, Mi G Y, Wang C M. A study on laser beam oscillating welding characteristics for the 5083 aluminum alloy: Morphology, Microstructure and Mechanical Properties[J]. Journal of Manufacturing Processes, 2020, 53: 12-20.
|
[18] |
Nie F H, Dong H G, Chen S, et al. Microstructure and mechanical properties of pulse mig welded 6061/A356 aluminum alloy dissimilar butt joints[J]. Journal of Materials Science & Technology, 2018, 34(3):551-560.
|
[19] |
Ling Y, Shen J Q, Hu S S, et al. Effect of TIG current on microstructural and mechanical properties of 6061-T6 aluminium alloy joints by TIG-CMT hybrid welding[J]. Journal of Materials Processing Technology, 2018, 255: 161-174.
|
[20] |
Huang L J, Wu D S, Hua X M, et al. Effect of the welding direction on the microstructural characterization in fiber laser-GMAW hybrid welding of 5083 aluminum alloy[J]. Journal of Manufacturing Processes, 2018, 31: 514-522.
|
[21] |
Zhu C X, Tang X H, He Y, et al. Effect of preheating on the defects and microstructure in NG-GMA welding of 5083 Al-alloy[J]. Journal of Materials Processing Technology, 2018, 251: 214-224.
|
[22] |
Engler O, Kuhnke K, Hasenclever J. Development of intermetallic particles during solidification and homogenization of two AA 5xxx series Al-Mg alloys with different Mg contents[J]. Journal of Alloys and Compounds, 2017, 728: 669-681.
|
[23] |
She X W, Jiang X Q, Zhang R H, et al. Study on microstructure and fracture characteristics of 5083 aluminum alloy thick plate[J]. Journal of Alloys and Compounds, 2020, 825: 153960.
|
[24] |
Engler O, Miller-Jupp S. Control of second-phase particles in the Al-Mg-Mn alloy AA 5083[J]. Journal of Alloys and Compounds, 2016, 689: 998-1010.
|
[25] |
Liu Y, Wang W J, Wei Y J, et al. Microstructure and mechanical properties of aluminum 5083 weldments by gas tungsten arc and gas metal arc welding[J]. Materials Science and Engineering A, 2012, 549: 7-13.
|