Yang Chaogang, Yang Kai, Chen Jiadui, et al. Analysis of micro TIG spot welding arc behaviors under different tungsten tip cone angle[J]. Welding & Joining, 2024(1):1 − 9. DOI: 10.12073/j.hj.20220919002
Citation: Yang Chaogang, Yang Kai, Chen Jiadui, et al. Analysis of micro TIG spot welding arc behaviors under different tungsten tip cone angle[J]. Welding & Joining, 2024(1):1 − 9. DOI: 10.12073/j.hj.20220919002

Analysis of micro TIG spot welding arc behaviors under different tungsten tip cone angle

More Information
  • Received Date: September 18, 2022
  • Issue Publish Date: January 24, 2024
  • Based on the theory of Magneto-Hydrodynamic (MHD), the arc numerical models of micro TIG spot welding with tungsten electrode radius of 0.8 mm and tip cone angle of 15°, 30°, 45° and 60° were developed. The source terms of momentum equation and energy equation and the conductivity of argon gas were loaded by the User Defined Function (UDF) of Fluent software to investigate the influence of tungsten tip cone angle on the temperature, flow, pressure and potential fields of the micro TIG arc. The results shows that the micro TIG arc is bell-shaped, and as the taper angle decreases from 60° to 30°, the radius of the tungsten conductive section decreases, leading to an increase in current density and an increase in arc temperature. As the taper angle continues to decrease, the arc creeps upward, the tungsten conductive area increases, the average current density decreases, and the arc temperature decreases. The change of tungsten taper angle significantly affects the plasma flow force and electromagnetic contraction force on the arc plasma momentum, which in turn affects the arc plasma motion velocity and anode surface pressure distribution. The numerical simulation results are in good agreement with the experimental results of micro TIG spot welding, and the simulation results are of great significance in regulating the tungsten cone angle and improving the arc shape and welding quality.

  • [1]
    雷正, 朱宗涛, 李远星, 等. 空心钨极TIG焊电弧特性数值模拟[J]. 焊接学报, 2021, 42(9): 9 − 14. doi: 10.12073/j.hjxb.20210131003
    [2]
    刘政军, 李宇航, 苏允海. Ar与H2混合气体保护下GTAW电弧特性数值模拟[J]. 焊接学报, 2019, 40(7): 67 − 71. doi: 10.12073/j.hjxb.2019400183
    [3]
    Luo Jian, Yao Zongxiang, Xue Keliang. Anti-gravity gradient unique arc behavior in the longitudinal electric magnetic field hybrid tungsten inert gas arc welding[J]. The International Journal of Advanced Manufacturing Technology, 2016, 84: 1 − 4. doi: 10.1007/s00170-016-8495-6
    [4]
    倪程, 朱科宇, 范霁康, 等. 基于层宽控制的AZ91镁合金TIG电弧增材工艺优化[J]. 焊接, 2022(1): 1 − 7. doi: 10.12073/j.hj.20210911001
    [5]
    蒋凡, 李元锋, 陈树君. 焊接电弧监测技术研究现状及展望[J]. 机械工程学报, 2018, 54(2): 16 − 26.
    [6]
    白岩, 高洪明, 路浩, 等. 基于LabVIEW的熔化极等离子弧焊接电弧电信号分析[J]. 焊接学报, 2006, 27(8): 59 − 62. doi: 10.3321/j.issn:0253-360X.2006.08.016
    [7]
    Wu Dongsheng, Huang Jiuling, Kong liang, et al. Numerical analysis of the arc and molten pool behaviors in high speed tandem TIG welding of titanium tubes[J]. Transactions of Nonferrous Metals Society of China, 2023, 33(6): 1768 − 1778. doi: 10.1016/S1003-6326(23)66220-X
    [8]
    肖磊, 樊丁, 黄健康. 交变磁场作用下的GTAW非稳态电弧数值模拟[J]. 机械工程学报, 2018, 54(16): 79 − 85.
    [9]
    张刚, 徐梓龙, 王开飞, 等. 直流叠加脉冲型TIG焊电弧−熔池特性分析[J]. 焊接学报, 2022, 43(2): 75 − 81+118. doi: 10.12073/j.hjxb.20210524003
    [10]
    Nahed C, Gounand S, Medale M. A numerical study of the effects of cathode geometry on tungsten inert gas type electric arcs[J]. International Journal of Heat and Mass Transfer, 2022, 182: 121923. doi: 10.1016/j.ijheatmasstransfer.2021.121923
    [11]
    Xiao Lei, Fan Ding, Huang Jiankang. Numerical simulation of unsteady arc in GTAW with alternate axial magnetic field[J]. Journal of Physics D Applied Physics, 2018, 54(16): 79 − 85.
    [12]
    王路明, 高辉, 周灿丰, 等. 高压环境等离子切割电弧数值模拟[J]. 焊接, 2021(5): 15 − 19.
    [13]
    Tang Chen, Zhang Xiaoning, Bing Bai, et al. Numerical study of DC argon arc with axial magnetic fields[J]. Plasma Chemistry and Plasma Processing, 2015, 35(1): 61 − 74. doi: 10.1007/s11090-014-9592-7
    [14]
    Iwao T, Mori Y, Okubo M, et al. Modelling of metal vapour in pulsed TIG including influence of self-absorption[J]. Journal of Physics, D. Applied Physics: A Europhysics Journal, 2010(43): 434010 .
    [15]
    石玗, 郭朝博, 黄健康, 等. 脉冲电流作用下TIG电弧的数值分析[J]. 物理学报, 2011, 60(4): 738 − 744. doi: 10.7498/aps.60.048102
    [16]
    张晓鸿, 陈静青, 张康, 等. 不同电流密度下的TIG焊电弧行为分析[J]. 焊接学报, 2017, 38(12): 77 − 80. doi: 10.12073/j.hjxb.20170730002
    [17]
    赵洪志, 马雷鹏, 张宇龙, 等. 焊接光谱数值模型探究[J]. 焊接技术, 2022, 51(4): 22 − 25. doi: 10.13846/j.cnki.cn12-1070/tg.2022.04.022
  • Related Articles

    [1]XU Zhengjie, YANG Wenzhen, LIU Yu, CHEN Yanqiu, WANG Jiawei. TIG non-penetration lap spot welding process and numerical simulation of 304 stainless steel[J]. WELDING & JOINING, 2025, (4): 57-65. DOI: 10.12073/j.hj.20240327005
    [2]Zhou Xin, Liang Xiaomei, Wang Jianchang, Huang Ruisheng, Teng Bin. Quadruple-electrode gas tungsten coupling arc double-wire additive manufacturing process of 00Cr13Ni5Mo stainless steel[J]. WELDING & JOINING, 2024, (5): 37-43. DOI: 10.12073/j.hj.20240202001
    [3]Jiang Fan, Zhao Shizong, Xu Bin, Lin Sanbao, Fan Chenglei, Chen Shujun. Physical characteristics of VPPAW arc for thick plate aluminum alloys[J]. WELDING & JOINING, 2023, (7): 1-8. DOI: 10.12073/j.hj.20221226001
    [4]Chen Guoqing, Teng Xinyan, Xing Ziqi, Zhang Binggang, Cao Hui. Research progress on welding of tungsten alloy with steel[J]. WELDING & JOINING, 2021, (11): 1-6,20. DOI: 10.12073/j.hj.20210825001
    [5]Wang Luming, Gao Hui, Zhou Canfeng, Chen Linke, Tong Haodong. Numerical simulation of plasma cutting arc in high pressure environment[J]. WELDING & JOINING, 2021, (5): 15-19. DOI: 10.12073/j.hj.20210220003
    [6]Yang Yicheng, Chen Jian, Huang Ruisheng, Xu Kai, Sun Qian, Du Bing. Key technical problems and development status of hollow tungsten arc welding[J]. WELDING & JOINING, 2021, (5): 1-8. DOI: 10.12073/j.hj.20210123002
    [7]JIAO Wenqing, HAN Hongbiao, WANG Lei, CHEN Junchao, WANG Zhonghao. Arc characteristics of high-energy pulsed precision cold welding and forming ability of additive manufacturing[J]. WELDING & JOINING, 2019, (5): 27-31. DOI: 10.12073/j.hj.20181126001
    [8]ZHU Zhiming, CHENG Shijia, FU Pingpo, YU Yingfei. Research and progress on behavior characteristics and stability evaluation of welding arc[J]. WELDING & JOINING, 2018, (11): 1-6,10.
    [9]LI Tianqing, CHANG Ming, WU Chuansong, LEI Yucheng. A review of numerical simulation of plasma arc welding process[J]. WELDING & JOINING, 2018, (7): 29-35.
    [10]Zhang Xiaodong, Wang Xinghua. The effect of several welding methods to the quality of gas tungsten arc weld (GTAW) for pipelines[J]. WELDING & JOINING, 2017, (2): 36-39.

Catalog

    Article views (118) PDF downloads (47) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return