Su Zhou, Huang Xiaoming, Chen Zhong’ao, et al. Electromagnetic induction welding process and welding strength of aeronautical composite materials[J]. Welding & Joining, 2024(1):45 − 52. DOI: 10.12073/j.hj.20221004001
Citation: Su Zhou, Huang Xiaoming, Chen Zhong’ao, et al. Electromagnetic induction welding process and welding strength of aeronautical composite materials[J]. Welding & Joining, 2024(1):45 − 52. DOI: 10.12073/j.hj.20221004001

Electromagnetic induction welding process and welding strength of aeronautical composite materials

More Information
  • Received Date: October 03, 2022
  • Issue Publish Date: January 24, 2024
  • A numerical model of electromagnetic induction welding is established based on the electro-magnetic-thermal multi-field co-simulation method to simulate the welding process. The welding strength of CFRP layer is analyzed by the Cohesive element and the secondary nominal strain failure criterion. The effects of the lap length of CFRP laminates and the thickness of PEEK adhesive layer on the welding strength were studied, and the simulation results were verified by single lap test. The results show that the temperature of the welded laminate is up to 385.7 ℃, the test result is 372.5 ℃ under the condition that the lap length is 12.5 mm and the thickness is 0.5 mm. The error between simulation results and test results is 3.5%. During the stretching process, the end of the welded joint is first damaged, and the tensile failure of the joint is caused by fiber pull-out failure, peeling failure and matrix cohesion failure. There is no obvious correlation between the welding strength of CFRP laminates and the lap length of laminates. The fracture type of PEEK adhesive layer is a mixed failure of open type and slip type. When the thickness of PEEK adhesive layer is 1mm, the calculated shear strength is 5.97 MPa.

  • [1]
    徐洁洁, 王栋, 肖荣诗, 等. 纤维增强热塑性树脂基复合材料与金属激光连接研究进展[J]. 焊接学报, 2021, 42(10):73 − 86+102.
    [2]
    熊健, 李志彬, 刘惠彬, 等. 航空航天轻质复合材料壳体结构研究进展[J]. 复合材料学报, 2021(6):1629 − 1650.
    [3]
    Baldwin H. The new-technology boeing 787 dreamliner, which makes extensive use of composite materials, promises to revolutionize commercial air travel[J]. Aviation Week & Space Technology, 2005, 14:1 − 16.
    [4]
    Zhang Hongzhuang, Li Changyou, Xu Mengtao, et al. A novel method for damage analysis of CFRP single-lap bolted, bonded and hybrid joints under compression[J]. Composite Structures, 2020, 251:112636. doi: 10.1016/j.compstruct.2020.112636
    [5]
    高辰恺, 杨瑾, 李铸国, 等. 铝/钢异种金属先进连接方法研究进展[J]. 焊接, 2021(11):7 − 20.
    [6]
    Abusrea M R, Arakawa K. Improvement of an adhesive joint constructed from carbon fiber-reinforced plastic and dry carbon fiber laminates[J]. Composites Part B: Engineering, 2016, 97:368 − 373. doi: 10.1016/j.compositesb.2016.05.005
    [7]
    Sun Ligang, Li Cheng, Tie Ying, et al. Experimental and numerical investigations of adhesively bonded CFRP single-lap joints subjected to tensile loads[J]. International Journal of Adhesion and Adhesives, 2019, 95:1 − 14.
    [8]
    宿欢欢, 吴志生, 贾托胜, 等. 碳纤维复合材料/铝合金焊接方法现状与发展[J]. 焊接技术, 2021, 50(S1):1 − 8.
    [9]
    韩绍华, 薛丁琪. 感应加热辅助原位合成Ti3SiC2连接SiC陶瓷[J]. 焊接学报, 2018, 39(3):61 − 66.
    [10]
    Costa A, Botelho E C, Costa M L, et al. A review of welding technologies for thermoplastic composites in aerospace applications[J]. Jaerosptechnolmanag, 2012, 4(3):255 − 265.
    [11]
    张国涛, 王垚, 杨瑞宾, 等. 30%碳纤维增强PA6复合材料的超声焊接−铆接复合连接工艺[J]. 焊接, 2020, 563(5):24 − 30.
    [12]
    Bayerl T, Duhovic M, Mitschang P, et al. The heating of polymer composites by electromagnetic induction-A review[J]. Composites Part A: Applied Science and Manufacturing, 2014, 57:27 − 40. doi: 10.1016/j.compositesa.2013.10.024
    [13]
    Segreto T, Bottillo A, Palmieri B, et al. Ultrasonic evaluation of induction heat treatment applied to thermoplastic matrix CFRP[J]. Procedia CIRP, 2020, 88:467 − 472. doi: 10.1016/j.procir.2020.05.081
    [14]
    Lionetto F, Pappadà S, Buccoliero G, et al. Finite element modeling of continuous induction welding of thermoplastic matrix composites[J]. Materials & Design, 2017, 120:212 − 221.
    [15]
    李卫杰, 张伟, 李元成, 等. 激光处理对3D打印聚醚酰亚胺, 聚醚醚酮和聚醚醚酮/碳纤维制件胶接性能的影响[J]. 高分子材料科学与工程, 2021, 37(12):75 − 82.
    [16]
    单毫, 陈宇, 李俊杰, 等. 红外加热缠绕成型工艺参数对CF/PEEK复合材料层间剪切性能的影响[J]. 复合材料科学与工程, 2020(1):39 − 46.
    [17]
    王鑫, 李勇, 还大军, 等. CF/PEEK超声原位固结铺放及其复合材料力学性能[J]. 航空学报, 2018, 39(9):224 − 232.
    [18]
    周天睿, 方立, 万明, 等. 连续CF增强PEEK复合材料层压板的制备工艺[J]. 工程塑料应用, 2016, 44(7):52 − 56.
    [19]
    彭佩基, 余进, 刘超, 等. 基于ANSYS磁场、热场模拟的铜钢高频电磁感应焊接[J]. 电焊机, 2018, 48(6):92 − 96.
    [20]
    于立国, 黄晓明, 董正宝, 等. 航空碳纤维复材板电−磁−热多场联合仿真与分析[J]. 河北科技大学学报, 2021, 42(6):543 − 552.
    [21]
    Riccio A, Russo A, Raimondo A, et al. A numerical/experimental study on the induction heating of adhesives for composite materials bonding[J]. Materials Today Communications, 2018, 15:203 − 213. doi: 10.1016/j.mtcomm.2018.03.008
    [22]
    Guo Wei, Xue Pu, Yang Jun. Nonlinear progressive damage model for composite laminates used for low-velocity impact[J]. Applied Mathematics and Mechanics (English Edition), 2013, 34(9):1145 − 1154. doi: 10.1007/s10483-013-1733-7

Catalog

    Article views (47) PDF downloads (23) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return