XU Zhengjie, YANG Wenzhen, LIU Yu, et al. TIG non-penetration lap spot welding process and numerical simulation of 304 stainless steel[J]. Welding & Joining, 2025(4):57 − 65. DOI: 10.12073/j.hj.20240327005
Citation: XU Zhengjie, YANG Wenzhen, LIU Yu, et al. TIG non-penetration lap spot welding process and numerical simulation of 304 stainless steel[J]. Welding & Joining, 2025(4):57 − 65. DOI: 10.12073/j.hj.20240327005

TIG non-penetration lap spot welding process and numerical simulation of 304 stainless steel

More Information
  • Received Date: March 26, 2024
  • Issue Publish Date: April 24, 2025
  • [Objective] The reference basis is provided for the welding process parameters of engine exhaust gas recirculation (EGR) valve by studying the welding process parameters of 304 stainless steel flat plate lap welding. [Methods] 304 stainless steel plate lap joint spot welding test is carried out by tungsten inert gas (TIG) welding. The microstructures and mechanical properties of different welding angles (15°~75°) under constant current 140 A and different pulse frequencies (5~25 Hz) under peak current 200 A and base current 80 A are studied. By using the numerical simulation software and Gaussian heat source model, the temperature field changes of constant current welding and pulse current welding are studied. [Results] The results show that, as the welding angle increases, the horizontal size and penetration depth of the macroscopic size of the soldered joint and the max tensile force decrease gradually, while the vertical size and the width of the weld leg first decrease and then increase. As the pulse frequency increasing, the width of the weld leg shrinks gradually while the weld penetration increases slightly. [Conslusion] Reasonable parameter selection is beneficial to control the size of the soldered joint. Through numerical simulation, the temperature of pulse current presents a zigzag rising trend, and the temperature change in each pulse period shows the characteristics of rapid heating and rapid cooling. Due to the heat conduction process, the temperature change of the backside of the soldered joint center of the two welding methods has a certain hysteresis compared with the soldered joint center.

  • [1]
    赵先锐, 左敦稳, 张强勇, 等. 304不锈钢TIG焊接工艺及数值模拟[J]. 电焊机, 2021, 51(5): 49 − 55.

    ZHAO Xianrui, ZUO Dunwen, ZHANG Qiangyong, et al. TIG welding process and numerical simulation of 304 stainless steel[J]. Electric Welding Machine, 2022, 51(5): 49 − 55.
    [2]
    AZEVEDO S C, DERESENDE A A. Effect of angle, distance between electrodes and TIG current on the weld bead geometry in TIG-MIG/MAG welding process[J]. The International Journal of Advanced Manufacturing Technology, 2021, 114(5): 1505 − 1515.
    [3]
    韩晓辉, 张志毅, 马国龙, 等. 热源角度对6A01铝合金激光−MIG复合焊成形及气孔的影响[J]. 中国激光, 2022, 49(2): 218 − 229.

    HAN Xiaohui, ZHANG Zhiyi, MA Guolong, et al. Effects of heat source angle on weld formation and porosity defects of laser-MIG hybrid welding of 6A01 aluminum alloy[J]. Chinese Journal of Lasers, 2022, 49(2): 218 − 229.
    [4]
    LIU Y, MA N, LU F, et al. Measurement and analysis of welding deformation in arc welded lap joints of thin steel sheets with different material properties[J]. Journal of Manufacturing Processes, 2021, 61: 507 − 517. doi: 10.1016/j.jmapro.2020.11.038
    [5]
    FARIAS R M, TEIXEIRA P R F, VILARINHO L O. An efficient computational approach for heat source optimization in numerical simulations of arc welding processes[J]. Journal of Constructional Steel Research, 2021, 176: 106382. doi: 10.1016/j.jcsr.2020.106382
    [6]
    CHEN F , XIANG J, THOMAS D G, et al. Model-based parameter optimization for arc welding process simulation[J]. Applied Mathematical Modelling, 2020, 81: 386 − 400.
    [7]
    贾剑平, 彭亮, 刘云龙, 等. 基于旋转电弧传感器的GMAW焊接熔滴过渡的数值模拟[J]. 热加工工艺, 2014, 43(3): 151 − 154.

    JIA Jianping, PENG Liang, LIU Yunlong, et al. Numerical simulation of metal transfer in GMAW based on rotating arc sensor[J]. Hot Working Technology, 2014, 43(3): 151 − 154.
    [8]
    张阳, 吕小青, 徐连勇, 等. 工件倾角对脉冲MAG焊接熔池形态和焊缝尺寸的影响[J]. 焊接学报, 2019, 40(10): 36 − 42.

    ZHANG Yang, LYU Xiaoqing, XU Lianyong, et al. Effect of workpiece inclination on weld pool shape and weld forming in pulsed MAG welding[J]. Transactions of the China Welding Institution, 2019, 40(10): 36 − 42.
    [9]
    陈永满. DP980双相钢冷金属过渡焊焊接工艺及接头组织性能研究[D]. 沈阳: 沈阳大学, 2018.

    CHEN Yongman. Study on cold metal transfer welding process and microstructureand and properties of DP980 dual-phase steel joints[D]. Shenyang, China: Shenyang University, 2018.
    [10]
    冯家玮, 江来珠, 徐锴, 等. 低镍含氮奥氏体不锈钢脉冲TIG焊接接头组织性能研究[J]. 电焊机, 2022, 52(1): 68 − 76.

    FENG Jiawei, JIANG Laizhu, XU Kai, et al. Study on microstructure and properties of pulsed TIG welded joints of austenitic stainless steel with nitrogen and low nickel[J]. Electric Welding Machine, 2022, 52(1): 68 − 76.
    [11]
    张晓鸿, 马朋召, 张康, 等. 脉冲TIG焊接工艺参数对高温镍基合金焊缝组织的调控研究[J]. 机械工程学报, 2018, 54(2): 93 − 101. doi: 10.3901/JME.2018.02.093

    ZHANG Xiaohong, MA Pengzhao, ZHANG Kang, et al. Study on controlling of welding seam microstructure about nickel-based high-temperature alloy by pulse TIG welding process[J]. Journal of Mechanical Engineering, 2018, 54(2): 93 − 101. doi: 10.3901/JME.2018.02.093
    [12]
    RAJESH M, DWIVEDI D K, AGARWAL A. Pulse TIG welding of two Al-Mg-Si alloys[J]. Journal of Materials Engineering & Performance, 2008, 17(5): 667 − 673.
    [13]
    陈勇, 陆建华, 徐育烺, 等. 不同焊接工艺下304不锈钢薄壁管件纵缝微观组织及力学性能研究[J]. 热加工工艺, 2022, 51(11): 134 − 138.

    CHEN Yong, LU Jianhua, XU Yuliang, et al. Microstructure and mechanical properties of 304 stainless steel thin wall pipe longitudinal seam under different welding processes[J]. Hot Working Technology, 2022, 51(11): 134 − 138.
    [14]
    姜爱华, 陈亮, 丁毅, 等. 焊接工艺对304不锈钢焊接接头耐晶间腐蚀性能的影响[J]. 铸造技术, 2012, 33(9): 87 − 88.

    JIANG Aihua, CHEN Liang, DING Yi, et al. Effect of welding process on intergranular corrosion resistance of 304 stainless steel welded joints[J]. Foundry Technology, 2012, 33(9): 87 − 88.
    [15]
    吴瑞萍, 王天先, 王文利, 等. SA-240 304/304L双牌号不锈钢与304/304L不锈钢性能对比分析[J]. 焊接, 2017(10): 51 − 55.

    WU Ruiping, WANG Tianxian, WANG Wenli, et al. Comparison of properties between SA-240 304/304L steel and 304L steel[J]. Welding & Joining, 2017(10): 51 − 55.
  • Related Articles

    [1]Wang Xuedong, Peng Zhibo, Lu Wei, Ma Xuyi. Numerical simulation of laser-assisted connection process of textured titanium alloy and composite material[J]. WELDING & JOINING, 2024, (11): 65-72, 80. DOI: 10.12073/j.hj.20231217002
    [2]Ye Feng, Peng Xingyu, Zhang Lijiang, Feng Liangjun. Numerical simulation of welding residual stress of Incoloy 825/L360QS bimetallic clad pipes[J]. WELDING & JOINING, 2023, (9): 48-53. DOI: 10.12073/j.hj.20220718002
    [3]Dong Junqiang, Chen Kexuan, Chen Peng. Numerical simulation of plasma-MIG hybrid welding based on different plasma currents[J]. WELDING & JOINING, 2023, (5): 1-6. DOI: 10.12073/j.hj.20220131001
    [4]Miao Guanghong, Ai Jiuying, Hu Yu, Qi Junxiang, Ma Honghao, Shen Zhaowu. Numerical simulation of influence of explosive welding parameters on interface waveform of tantalum/304 stainless steel[J]. WELDING & JOINING, 2022, (11). DOI: 10.12073/j.hj.20220222003
    [5]Li Yan, Li Yanbiao, Liu Cuirong, Ren Jinsuo, Zhao Rui. Numerical simulation and experimental verification on forming mechanism of Ti/Al explosive welding interface[J]. WELDING & JOINING, 2021, (9): 10-15. DOI: 10.12073/j.hj.20210602002
    [6]HUANG Zepai, LI Huijun, WANG Ruichao, WANG Hao. Numerical simulation of droplet transition in ultrasonic-MIG welding[J]. WELDING & JOINING, 2021, (2): 29-33. DOI: 10.12073/j.hj.20201029001
    [7]JI Yantao, GUO Chunrong, SHANG Wenfeng, LI Zhangan, QIN Guoliang, LIU Shungang. Numerical simulation of influence of non-fusion on residual stress in multi-pass and multi-layer welding of thick steel plate[J]. WELDING & JOINING, 2020, (10): 14-21. DOI: 10.12073/j.hj.20200917001
    [8]LIU Hongchang, FAN Xixiang, ZHAO Mingming, YAN Tingyan, ZHAN Xiaohong. Numerical simulation on multi-layer weave bead welding process of thick plate Invar steel[J]. WELDING & JOINING, 2019, (3): 50-55. DOI: 10.12073/j.hj.20181018001
    [9]Zheng Hong, Wang Wenyan. Numerical simulation in plate butt multipass welding of 7B05 Al-alloy[J]. WELDING & JOINING, 2017, (11): 14-17.
    [10]Fang Yuanbin, Zong Xuemei, Yun Zhengwen, Meng Qingyu, Chen Bing. Establishment and application of process support in welding numerical simulation[J]. WELDING & JOINING, 2017, (9): 29-31.

Catalog

    Article views (17) PDF downloads (2) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return