LIANG Yiming, ZHAO Mingyuan, SHENG Lanbing, et al. Research status of brazing interface and erosion control of titanium alloy[J]. Welding & Joining, 2025(4):66 − 77. DOI: 10.12073/j.hj.20240716001
Citation: LIANG Yiming, ZHAO Mingyuan, SHENG Lanbing, et al. Research status of brazing interface and erosion control of titanium alloy[J]. Welding & Joining, 2025(4):66 − 77. DOI: 10.12073/j.hj.20240716001

Research status of brazing interface and erosion control of titanium alloy

More Information
  • Received Date: July 15, 2024
  • Issue Publish Date: April 24, 2025
  • Titanium alloy has excellent characteristics such as low density and high strength, known as ‘metal of the future’, it is a new type of lightweight structural material with great application prospects, and it is widely used in the key parts of high-end equipment in the aerospace, shipbuilding, and national defense and military industries. In recent years, development trend of aerospace equipment lightweight is obvious, large size, complex structure, thin-walled structure of high-strength titanium alloy components manufacturing demand has received great attention. Brazing is the most effective manufacturing method for complex, multi-layer, thin-walled structure titanium alloy components. Research reports on brazing of titanium alloys at home and abroad are reviewed, focusing on erosion problem of brazed joints of titanium alloy. By summarizing the commonly used crystalline titanium-based brazing materials, amorphous titanium-based brazing materials, in-situ synthetic titanium-based brazing materials and brazing process parameters, effects of brazing material composition, brazing temperature and holding time on erosion are analyzed. The summary proposes relevant solutions to reduce erosion. For example, reducing melting point of brazing material and lowering the brazing temperature is by adjusting elemental content of brazing material. Amorphous titanium-based brazing material is adopted to reduce compounds content of brazed joints. In-situ synthesized titanium-based brazing material is adopted to reduce diffusion of brazing material to base material. Further attention should be paid to the subsequent research on brazing of thin-walled titanium alloys.

  • [1]
    高福洋, 廖志谦, 李文亚. 钛及钛合金焊接方法与研究现状[J]. 航空制造技术, 2012(Z2): 86 − 90.

    GAO F Y, LIAO Z Q, LI W Y. Welding method and research of titanium and titanium alloy[J]Aviation Manufacturing Technology, 2012(Z2): 86 − 90.
    [2]
    刘欢, 高晓龙, 刘晶, 等. Ti6Al4V/Cu异种金属激光焊接头组织及性能研究[J]. 焊接, 2019(10): 7 − 11.

    LIU H, GAO X L, LIU J, et al. Microstructure and properties of Ti6Al4V/Cu dissimilar metals laser welded joints[J]. Welding & Joining, 2019(10): 7 − 11.
    [3]
    刘世锋, 宋玺, 薛彤, 等. 钛合金及钛基复合材料在航空航天的应用和发展[J]. 航空材料学报, 2020, 40(3): 77 − 94. doi: 10.11868/j.issn.1005-5053.2020.000061

    LIU S F, SONG X, XUE T, et al. Application and development of titanium alloys and titanium matrix composites in aerospace[J]. Journal of Aeronautical Materials, 2020, 40(3): 77 − 94. doi: 10.11868/j.issn.1005-5053.2020.000061
    [4]
    陈子勇, 刘莹莹, 靳艳芳, 等. 航空发动机用耐650 ℃高温钛合金研究现状与进展[J]. 航空制造技术, 2019, 62(19): 22 − 30.

    CHEN Z Y, LIU Y Y, JIN Y F, et al. Research on 650 ℃ high temperature titanium alloy technology for aero-engine[J]. Aviation Manufacturing Technology, 2019, 62(19): 22 − 30.
    [5]
    陈联国, 王文盛, 朱知寿, 等. 大规格损伤容限钛合金TC4-DT的研制及应用[J]. 航空学报, 2020, 41(6): 381 − 389.

    CHEN L G, WANG W S, ZHU Z S, et al. Development and application of large-scale damage tolerance titanium alloy TC4-DT[J]. Journal of Aeronautics, 2020, 41(6): 381 − 389.
    [6]
    刘德运, 沈元勋, 李秀朋, 等. 钛合金与铝合金异种金属钎焊及熔钎焊研究进展[J]. 焊接, 2023(12): 50 − 57. doi: 10.12073/j.hj.20230129001

    LIU D Y, SHEN Y X, LI X P, et al. Research progress on brazing and welding-brazing of titanium alloy and aluminum alloy dissimilar metals[J]. Welding & Joining, 2023(12): 50 − 57. doi: 10.12073/j.hj.20230129001
    [7]
    李悦, 王建峰, 马龙飞, 等. 保温时间对钛合金板翅式换热器真空钎焊过程温度场及残余应力的影响[J]. 焊接学报, 2024, 45(2): 33 − 40. doi: 10.12073/j.hjxb.20230303001

    LI Y, WANG J F, MA L F, et al. Effect of holding time on temperature field and residual stress in the vacuum brazing process of titanium alloy plate-fin heat exchangers[J]. Transactions of the China Welding Institution, 2024, 45(2): 33 − 40. doi: 10.12073/j.hjxb.20230303001
    [8]
    于得水, 张岩, 周建平, 等. 钛合金与铝合金异种金属焊接的研究现状[J]. 焊接, 2020(11): 37 − 45. doi: 10.12073/j.hj.20200628001

    YU Deshui, ZHANG Yan, ZHOU Jianping, et al. Researching status of dissimilar metal welding of titanium and aluminum[J]. Welding & Joining, 2020(11): 37 − 45. doi: 10.12073/j.hj.20200628001
    [9]
    乔瑞林, 龙伟民, 钟素娟, 等. 原位反应在钎焊中的应用[J]. 材料导报, 2023, 37(23): 141 − 148.

    QIAO R L, LONG W M, ZHONG S J, et al. Application of in situ reactions in brazing[J]. Materials Reports, 2023, 37(23): 141 − 148.
    [10]
    SHAPIRO A, RABINKIN A. State of the art of titanium-based brazing filler metals[J]. Welding Journal, 2003, 82(10): 36 − 43.
    [11]
    吴铭方, 蒋成禹, 于治水, 等. Ti-6Al-4V真空钎焊研究[J]. 机械工程学报, 2002, 38(4): 71 − 73. doi: 10.3321/j.issn:0577-6686.2002.04.015

    WU M F, JIANG Y C, YU Z S, et al. Study on vacuum brazing of Ti-6Al-4V[J]. Chinese Journal of Mechanical Engineering, 2002, 38(4): 71 − 73. doi: 10.3321/j.issn:0577-6686.2002.04.015
    [12]
    YUAN L, XIONG J T, DU Y J, et al. Effects of pure Ti or Zr powder on microstructure and mechanical properties of Ti-6Al-4V and Ti2AlNb joints brazed with TiZrCuNi[J]. Materials Science and Engineering: A, 2020, 788: 139602. doi: 10.1016/j.msea.2020.139602
    [13]
    WANG Y, JIAO M , YANG Z W, et al. Vacuum brazing of Ti2AlNb and TC4 alloys using Ti-Zr-Cu-Ni and Ti-Zr-Cu-Ni+Mo filler metals: Microstructural evolution and mechanical properties[J]. Archives of Civil and Mechanical Engineering, 2018, 18(2): 546−556.
    [14]
    CUI B, HUANG J H, CAI C, et al. Microstructures and mechanical properties of Cf/SiC composite and TC4 alloy joints brazed with (Ti-Zr-Cu-Ni)+W composite filler materials[J]. Composites Science & Technology, 2014, 97: 19 − 26.
    [15]
    JING Y J, XIONG H P, SHANG Y L, et al. Design TiZrCuNi filler materials for vacuum brazing TA15 alloy[J]. Journal of Manufacturing Processes, 2020, 53: 328 − 335. doi: 10.1016/j.jmapro.2020.02.021
    [16]
    王浩军, 胡生双, 肖君, 等. B-Ti57CuZrNi钎料对接钎焊TC4钛合金接头的组织和性能[J]. 金属热处理, 2023, 48(7): 148 − 152.

    WANG H J, HU S S, XIAO J, et al. Microstructure and properties of TC4 titanium alloy butt welding brazed joint with B-Ti57CuZrNi solder[J]. Heat Treatment of Metals, 2023, 48(7): 148 − 152.
    [17]
    WAN B, LI X Q, PAN C L, et al. Microstructure and mechanical properties of TiAl/Ni-based superalloy joints vacuum brazed with Ti-Zr-Fe-Cu-Ni-Co-Mo filler metal[J]. Rare Metals, 2021, 40(8): 2134 − 2142. doi: 10.1007/s12598-020-01550-x
    [18]
    HE Y M, LU C Y, NI C Y, et al. Tailoring microstructure and mechanical performance of the TC4 titanium alloy brazed joint through doping rare-earth element Dy into Ti-Cu-Ni filler alloy[J]. Journal of Manufacturing Processes, 2020, 50: 255 − 265. doi: 10.1016/j.jmapro.2019.12.044
    [19]
    LIU S L, MIAO J K, ZHANG W W, et al. Interfacial microstructure and shear strength of TC4 alloy joints vacuum brazed with Ti-Zr-Ni-Cu filler metal[J]. Materials Science and Engineering: A, 2020, 775: 138990. doi: 10.1016/j.msea.2020.138990
    [20]
    DU Y J, ZHANG J R, LI J L, et al. Microstructure evolution and mechanical properties of Ti2AlNb/TC17 joints brazed with Ti-Zr-Cu-Ni filler metal[J]. Vacuum, 2023, 215: 112365. doi: 10.1016/j.vacuum.2023.112365
    [21]
    GALINDO-NAVA E I, JING Y J, JIANG J. Predicting the hardness and solute distribution during brazing of Ti-6Al-4V with Ti-Zr-Cu Ni filler metals[J]. Materials Science and Engineering: A, 2017, 712: 122 − 126.
    [22]
    JING Y J, YANG H B, SHANG Y L, et al. The design of a new Ti-Zr-Cu-Ni-Ag brazing filler metal for brazing of titanium alloys[J]. Welding in the World, 2021, 65: 2231 − 2237. doi: 10.1007/s40194-021-01181-5
    [23]
    陈修凯, 路英瑶, 卞红, 等. 钎焊温度对TA1/Ti-Zr-Cu-Ni-Ag/TA1接头界面组织性能的影响[J]. 电焊机, 2023, 53(8): 78 − 85. doi: 10.7512/j.issn.1001-2303.2023.08.10

    CHEN X K, LU Y Y, BIAN H, et al. Effect of brazing temperature on interfacial microstructure and mechanical property of TA1/Ti-Zr-Cu-Ni-Ag/TA1 joint[J]. Electric Welding Machine, 2023, 53(8): 78 − 85. doi: 10.7512/j.issn.1001-2303.2023.08.10
    [24]
    BARRETT C D, IMANDOUST A, KADIRI H E. The effect of rare earth element segregation on grain boundary energy and mobility in magnesium and ensuing texture weakening[J]. Scripta Materialia, 2018, 146: 46 − 50. doi: 10.1016/j.scriptamat.2017.11.004
    [25]
    TIAN H, HE J C, HOU J B, et al. Analysis of the microstructure and mechanical properties of TiBw/Ti-6Al-4V Ti matrix composite joint fabricated using TiCuNiZr amorphous brazing filler metal[J]. Materials, 2021, 14(4): 875. doi: 10.3390/ma14040875
    [26]
    KHORUNOV V F, MAKSIMOVA S V, Production and application of rapidly quenched brazing alloys[J]. Welding International, 2006, 20(5): 405 − 409.
    [27]
    梅俊, 祁焱, 徐立红, 等. 采用钛基非晶态钎料真空钎焊Ti65高温钛合金[J]. 金属功能材料, 2024, 31(1): 126 − 131.

    MEI J, QI Y, XU L H, et al. Vacuum brazing of Ti65 high temperature titanium alloy with titanium based amorphous brazing filler[J]. Metallic Functional Materials, 2024, 31(1): 126 − 131.
    [28]
    CAI Y S, LIU R C, ZHU Z W, et al. Effect of brazing temperature and brazing time on the microstructure and tensile strength of TiAl-based alloy joints with Ti-Zr-Cu-Ni amorphous alloy as filler metal[J]. Intermetallics, 2017, 91: 35 − 44. doi: 10.1016/j.intermet.2017.08.008
    [29]
    XIA Y Q, DONG H G, LI P. Brazing TC4 titanium alloy/316L stainless steel joint with Ti50-xZrxCu39Ni11 amorphous filler metals[J]. Journal of Alloys and Compounds, 2020, 849: 156650. doi: 10.1016/j.jallcom.2020.156650
    [30]
    LIU Y P, WANG G, CAO W, et al. Brazing ZrB2-SiC ceramics to Ti6Al4V alloy with TiCu-based amorphous filler[J]. Journal of Manufacturing Processes, 2017, 30: 516 − 522. doi: 10.1016/j.jmapro.2017.10.021
    [31]
    BAI X Y, LIU M Q, PANG S J, et al. Novel Ti-Zr-Co-Cu-M(M=Sn, V, Al) amorphous/nanocrystalline brazing fillers for joining Ti-6Al-4V alloy[J]. Materials Characterization, 2023, 196: 112607. doi: 10.1016/j.matchar.2022.112607
    [32]
    韩文倩, 董红刚, 马月婷, 等. Ti43.76Zr12.50Cu37.49- xNi6.25Co x非晶钎料真空钎焊TC4钛合金/316L不锈钢[J]. 焊接学报, 2024, 45(1): 47 − 57. doi: 10.12073/j.hjxb.20221123001

    HAN W Q, DONG H G, MA Y T, et al. Vacuum brazing TC4 titanium alloy/316L stainless steel with Ti43.76Zr12.50Cu37.49- xNi6.25Co x amorphous filler metal[J]. Transaction of the China Welding Institution, 2024, 45(1): 47 − 57. doi: 10.12073/j.hjxb.20221123001
    [33]
    ONG F S, TOBE H, SATO E. Simultaneous intermetallics suppression and residual-stress relaxation of heat-resistant Nb-interlayer-inserted Ti-6Al-4V/Si3N4 joints via one-step transient liquid phase bonding and brazing[J]. Journal of Materials Science & Technology, 2023, 139: 79 − 91.
    [34]
    WU Z Y, YEH T Y, SHIUE R K, et al. The effect of substrate dissolution in brazing CP-Ti and Ti-15-3 using clad Ti-15Cu-15Ni filler[J]. ISIJ International, 2010, 50(3): 450 − 454. doi: 10.2355/isijinternational.50.450
    [35]
    CHANG C T, DU Y C, SHIUE R K, et al. Infrared brazing of high-strength titanium alloys by Ti-15Cu-15Ni and Ti-15Cu-25Ni filler foils[J]. Materials Science and Engineering: A, 2006, 420: 155 − 164. doi: 10.1016/j.msea.2006.01.046
    [36]
    杨浩哲, 裴夤崟, 秦建, 等. TiZrCuNi粉状钎料真空钎焊TA2纯钛接头界面组织及力学性能[J]. 电焊机, 2022, 52(6): 112 − 117. doi: 10.7512/j.issn.1001-2303.2022.06.14

    YANG H Z, PEI Y Y, QIN J, et al. Microstructure and mechanical properties of pure titanium TA2 vacuum brazing joint with TiZrCuNi powder brazing filler metal[J]. Electric Welding Machine, 2022, 52(6): 112 − 117. doi: 10.7512/j.issn.1001-2303.2022.06.14
    [37]
    杨浩哲, 裴夤崟, 沈元勋, 等. ZrCuNi中间层瞬间液相焊扩散连接纯钛TA2工艺研究[J]. 电焊机, 2023, 53(4): 81 − 89.

    YANG H Z, PEI Y Y, SHEN Y X, et al. Study on transient liquid phase bonded of CP-Ti TA2 joint with ZrCuNi interlayer[J]. Electric Welding Machine, 2023, 53(4): 81 − 89.

Catalog

    Article views (22) PDF downloads (12) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return