Citation: | ZHENG Kaiwen, HUANG Ruisheng, TENG Bin, et al. Overview of laser wire filling additive manufacturing technology for titanium alloy[J]. Welding & Joining, 2025(5):62 − 72, 88. DOI: 10.12073/j.hj.20241213002 |
Laser wire filling additive manufacturing technology is gradually being widely used in industrial production due to its ability to produce structural components with complex structures, high dimensional accuracy, and good comprehensive performance. However, traditional processing and manufacturing techniques for titanium alloys suffer from high costs, low material utilization, and low efficiency. Therefore, exploration of performance and window of laser wire filling additive manufacturing process for titanium alloy materials has great research significance. In recent years, domestic and foreign researchers have conducted in-depth exploration in this area and made significant progress. This article focuses on basic principles and classification of laser wire filling deposition technology for titanium alloy, and summarizes factors affecting forming and changes in microstructure and properties of titanium alloy in laser wire filling additive manufacturing process with a large number of references. It also analyzes future development trends and main research directions of this technology.
[1] |
杨川, 徐文臣, 万星杰, 等. TC4钛合金薄壁高筋构件近等温锻造技术研究[J]. 塑性工程学报, 2019, 26(2): 69 − 78. doi: 10.3969/j.issn.1007-2012.2019.02.009
YANG C, XU W C, WAN X J, et al. Research on near isothermal forging process of TC4 titanium alloy forgings with thin wall and high rib[J]. Journal of Plasticity Engineering, 2019, 26(2): 69 − 78. doi: 10.3969/j.issn.1007-2012.2019.02.009
|
[2] |
赵昀, 梁乐, 孙宏伟, 等. 层间冷却对电弧增材制造钛合金构件性能的影响[J]. 焊接, 2024(2): 26 − 30. doi: 10.12073/j.hj.20221019002
ZHAO Y, LIANG L, SUN H W, et al. Effects of interpass cooling on mechanical properties of Ti6Al4V alloy parts fabricated by wire arc additive manufacturing[J]. Welding & Joining, 2024(2): 26 − 30. doi: 10.12073/j.hj.20221019002
|
[3] |
XIONG Y, TANG Y L, ZHOU Q, et al. Intelligent additive manufacturing and design state of the art and future perspectives[J]. Additive Manufacturing, 2022, 59: 103139. doi: 10.1016/j.addma.2022.103139
|
[4] |
卢秉恒. 增材制造技术——现状与未来[J]. 中国机械工程, 2020, 31(1): 19 − 23. doi: 10.3969/j.issn.1004-132X.2020.01.003
LU B H. Additive manufacturing——Current situation and future[J]. China Mechanical Engineering, 2020, 31(1): 19 − 23. doi: 10.3969/j.issn.1004-132X.2020.01.003
|
[5] |
姚兴中, 李会军, 杨振文, 王颖. 微量TiC粉末合金化改善电弧增材制造Ti-6Al-4V合金的组织和性能[J]. 焊接学报, 2024, 45(6): 12 − 19. doi: 10.12073/j.hjxb.20230422001
YAO X Z, LI H J, YANG Z W, et al. Tailoring the microstructure and mechanical properties of wire arc additive manufactured Ti-6Al-4V alloy by trace TiC powder addition[J]. Transactions of the China Welding Institution, 2024, 45(6): 12 − 19. doi: 10.12073/j.hjxb.20230422001
|
[6] |
YU S F, LIN H T, QIU Y. Arc additive manufacturing of gradient hot forging die with shaped waterways[J]. China Welding, 2024, 33(1): 27 − 39.
|
[7] |
谢伟峰, 周禹阳, 年科宇, 等. 摆动参数对铝合金电弧增材制造薄壁成形形貌及尺寸的影响[J]. 焊接, 2024(2): 9 − 17, 25. doi: 10.12073/j.hj.20220731004
XIE W F, ZHOU Y Y, NIAN K Y, et al. Effect of weaving parameters on morphology and size of thin-walled aluminum alloy formed by wire and arc additive manufacturing[J]. Welding & Joining, 2024(2): 9 − 17, 25. doi: 10.12073/j.hj.20220731004
|
[8] |
GUO N, WU D, YU M Q, et al. Microstructure and properties of Ti-6A1-4V titanium alloy prepared by underwater wire feeding laser deposition[J]. Journal of Manufacturing Processes, 2022, 73: 269 − 278. doi: 10.1016/j.jmapro.2021.11.002
|
[9] |
QIAN M, XU W, BRANDT M, et al. Additive manufacturing and post-processing of Ti-6Al-4V for superior mechanical properties[J]. MRS Bulletin, 2016, 41: 775 − 784. doi: 10.1557/mrs.2016.215
|
[10] |
TANG H P, WANG J, SONG C N, et al. Microstructure, mechanical properties, and flatness of SEBM Ti-6Al-4V sheet in as-built and hot isostatically pressed conditions[J]. JOM, 2017, 69(3): 466 − 471. doi: 10.1007/s11837-016-2253-y
|
[11] |
陈国庆, 树西, 张秉刚, 等. 国内外电子束熔丝沉积增材制造技术发展现状[J]. 焊接学报, 2018, 39(8): 123 − 128. doi: 10.12073/j.hjxb.2018390214
CHEN G Q, SHU X, ZHANG B G, et al. State-of-arts of electron beam freeform fabrication technology[J]. Transactions of the China Welding Institution, 2018, 39(8): 123 − 128. doi: 10.12073/j.hjxb.2018390214
|
[12] |
BENSA A, PAGLIAZZI G, MIELE A, et al. Robotic-assisted total hip arthroplasty provides greater implant placement accuracy and lower complication rates, but not superior clinical results compared to the conventional manual approach: A systematic review and meta-analysis[J/OL]. The Journal of Arthroplasty, 1 − 11[2024-12-20]. https://doi.org/10.1016/j.arth.2024.12.014.
|
[13] |
胡美娟, 吉玲康, 吴成武, 等. 电弧增材制造工艺及其应用[J]. 石油管材与仪器, 2024, 10(2): 1 − 7.
HU M J, JI L K, WU C W, et al. Wire arc additive manufacturing processes and application[J]. Petroleum Tubular Goods & Instruments, 2024, 10(2): 1 − 7.
|
[14] |
黄健康, 吴昊盛, 于晓全, 等. 钛合金电弧增材制造工艺方法及微观组织调控的研究现状[J]. 材料导报, 2023, 37(14): 97 − 102.
HUANG J K, WU H S, YU X Q, et al. State of the arc for titanium alloy wire arc additive manufacturing process and microstructure control[J]. Materials Reports, 2023, 37(14): 97 − 102.
|
[15] |
牟建伟, 于传军, 汤海波, 等. 激光增材连接TA15钛合金显微组织及力学性能研究[J]. 中国激光, 2023, 50(16): 213 − 220.
MOU J W, YU C J, TANG H B, et al. Microstructure and mechanical properties of TA15 titanium component manufactured via laser additive connection[J]. Chinese Journal of Lasers, 2023, 50(16): 213 − 220.
|
[16] |
NOWOTNY S, THIEME S, ALBERT D, et al. Generative manufacturing and repair of metal parts through direct laser deposition using wire material[C]//Dresden, Germany: 6th Programming Languages for Manufacturing, 2013: 185 − 189.
|
[17] |
朱胜, 柳建, 殷凤良, 等. 面向装备维修的增材再制造技术[J]. 装甲兵工程学院, 2014, 28(1): 81 − 85.
ZHU S, LIU J, YIN F L, et al. Additive remanufacturing technology used in equipment repair[J]. Journal of Academy of Armored Force Engineering, 2014, 28(1): 81 − 85.
|
[18] |
HEER B, BANDYOPADHYAY A. Silica coated titanium using laser engineered net shaping for enhanced wear resistance[J]. Additive Manufacturing, 2018, 23: 303 − 311. doi: 10.1016/j.addma.2018.08.022
|
[19] |
NIE Z G, WANG G, MCGUFFIN-CAWLEY J D, et al. Experimental study and modeling of H13 steel deposition using laser hot-wire additive manufacturing[J]. Journal of Materials Processing Technology, 2016, 235: 171 − 186. doi: 10.1016/j.jmatprotec.2016.04.006
|
[20] |
CHEN Z, YE H, XU H Y. Distortion control in a wire-fed electron-beam thin-walled Ti-6Al-4V freeform[J]. Journal of Materials Processing Technology, 2018, 258: 286 − 295. doi: 10.1016/j.jmatprotec.2018.04.008
|
[21] |
CUNNINGHAM C R, FLYNN J M, SHOKRANI A, et al. Invited review article: Strategies and processes for high quality wire arc additive manufacturing[J]. Additive Manufacturing, 2018, 22: 672 − 686. doi: 10.1016/j.addma.2018.06.020
|
[22] |
姚俊卿, 刘鑫旺, 刘洁, 等. 钛合金激光送丝沉积增材制造技术研究进展[J/OL]. 激光与光电子学进展, 1 − 20[2025-04-01]. http://kns.cnki.net/kcms/detail/31.1690.tn.20240918.2238.036.html.
YAO J Q, LIU X W, LIU J, et al. Research progress of wire-feeding laser metal deposition additive manufacturing technology for titanium alloy[J/OL]. Laser & Optoelectronics Progress, 1 − 20[2025-04-01]. http://kns.cnki.net/kcms/detail/31.1690.tn.20240918.2238.036.html.
|
[23] |
SYED W U H, PINKERTON A J, LI L. A comparative study of wire feeding and powder feeding in direct diode laser deposition for rapid prototyping[J]. Applied Surface Science, 2005, 247(1-4): 268 − 276. doi: 10.1016/j.apsusc.2005.01.138
|
[24] |
NICKEL A H, BARNETT D M, PRINZ F B. Thermal stresses and deposition patterns in layered manufacturing[J]. Materials Science & Engineering: A, 2001, 317(1-2): 59 − 64.
|
[25] |
王喆. TC4钛合金激光热丝增材制造工艺优化及组织性能研究[D]. 山东 烟台: 哈尔滨工程大学, 2023.
WANG Z. Process optimization, microstructure and properties of TC4 alloy by laser hot wire additive manufacture[D]. Yantai, Shandong, China: Harbin Engineering University, 2023.
|
[26] |
段宇航. TC11高温钛合金激光−MIG复合熔丝增材制造工艺及组织性能研究[D]. 江苏 镇江: 江苏科技大学, 2023.
DUAN Y H. Study on the process and microstructure properties of laser-MIG arc composite fuse additive manufacturing TC11 high-temperature titanium alloy[D]. Zhenjiang, Jiangsu, China: Jiangsu University of Science and Technology, 2023.
|
[27] |
伍新泽. 激光熔丝增材制造Ti6Al4V合金组织及性能研究[D]. 山东 烟台: 哈尔滨工程大学, 2023.
WU X Z. Microstructure and properties of Ti6Al4V alloy prepared by wire and laser additive manufacturing[D]. Yantai, Shandong, China: Harbin Engineering University, 2023.
|
[28] |
刘振. 钛合金激光熔丝增材制造及铣削性能数值模拟研究[D]. 沈阳: 东北大学, 2020.
LIU Z. Numerical simulation of additive manufacturing and milling performance of titanium alloy laser fuse[D]. Shenyang, China: Northeastern University, 2020.
|
[29] |
陈源, 姜梦, 陈曦, 等. 光丝同轴激光增材制造研究进展[J]. 材料科学与工艺, 2022, 30(2): 16 − 27. doi: 10.11951/j.issn.1005-0299.20210207
CHEN Y, JIANG M, CHEN X, et al. Research progress of coaxial laser wire additive manufacturing[J]. Materials Science and Technology, 2022, 30(2): 16 − 27. doi: 10.11951/j.issn.1005-0299.20210207
|
[30] |
PAJUKOSKI H, NÄKKI J, THIEME S, et al. High performance corrosion resistant coatings by novel coaxial cold-and hot-wire laser cladding methods[J]. Journal of Laser Applications, 2015, 28(1): 012011.
|
[31] |
吉绍山, 刘凡, 傅戈雁, 等. 三光束光内同轴送丝激光熔覆成形新方法研究[J]. 表面技术, 2019, 48(4): 285 − 293.
JI S S, LIU F, FU G Y, et al. New forming method of coaxial wire feeding inside three beams laser cladding[J]. Surface Technology, 2019, 48(4): 285 − 293.
|
[32] |
朱进前. 环列式多激光束熔丝增材制造工艺特性研究[D]. 重庆: 重庆大学, 2018.
ZHU J Q. Study on the process characteristics of circular multi-laser melting wire additive manufacturing[D]. Chongqing, China: Chongqing University, 2018.
|
[33] |
MOTTA M, DEMIR A G, PREVITALI B. High-speed imaging and process characterization of coaxial laser metal wire deposition[J]. Additive Manufacturing, 2018, 22: 497 − 507. doi: 10.1016/j.addma.2018.05.043
|
[34] |
MOK S H, BI G J, FOLKES J, et al. Deposition of Ti-6Al-4V using a high power diode laser and wire, Part II: Investigation on the mechanical properties[J]. Surface and Coatings Technology, 2008, 202(19): 4613 − 4619. doi: 10.1016/j.surfcoat.2008.03.028
|
[35] |
MOURES F, CICALĂ E, SALLAMAND P, et al. Optimisation of refractory coatings realised with cored wire addition using a high-power diode laser[J]. Surface and Coatings Technology, 2005, 200(7): 2283 − 2292.
|
[36] |
MORTELLO M, CASALINO G. Transfer mode effects on Ti6Al4V wall building in wire laser additive manufacturing[J]. Manufacturing Letters, 2021, 28: 17 − 20.
|
[37] |
KUZNETSOV A, JEROMEN A, GOVEKAR E. Droplet detachment regimes in annular laser beam droplet generation from a metal wire[J]. CIRP Annals, 2014, 63(1): 225 − 228.
|
[38] |
朱萍. 同轴送丝激光熔覆工艺研究及薄壁墙成形堆积[D]. 江苏 苏州: 苏州大学, 2013.
ZHU P. Study on inside-laser coaxial wire feeding process of laser cladding and single beads prototyping[D]. Suzhou, Jiangsu, China: Soochow University, 2013.
|
[39] |
MOK S H, BI G J, FOLKES J, et al. Deposition of Ti-6Al-4V using a high power diode laser and wire, Part I: Investigation on the process characteristics[J]. Surface and Coatings Technology, 2008, 202(16): 3933 − 3939.
|
[40] |
BRANDL E, MICHAILOV V, VIEHWEGER B, et al. Deposition of Ti-6Al-4V using laser and wire, Part II: Hardness and dimensions of single beads[J]. Surface and Coatings Technology, 2011, 206(6): 1130 − 1141. doi: 10.1016/j.surfcoat.2011.07.094
|
[41] |
范秋霞, 申书旺, 张倩倩, 等. 激光功率对H13-TiC熔覆层温度场及应力场的影响规律[J]. 激光与光电子学进展, 2023, 60(21): 180 − 189.
FAN Q X, SHEN S W, ZHANG Q Q, et al. Effect of laser power on temperature and stress fields of H13-TiC cladding layer[J]. Laser and Optoelectronics Progress, 2023, 60(21): 180 − 189.
|
[42] |
张迎寅. 光内粉丝同送熔覆工艺及成形研究[D]. 江苏 苏州: 苏州大学, 2013.
ZHANG Y Y. Study on cladding process of inside-laser powder and wire synchronization feeding and forming[D]. Suzhou, Jiangsu, China: Soochow University, 2013.
|
[43] |
王涵, 周伟民, 闵国全, 等. 送丝激光增材制造的研究进展[J]. 中国金属通报, 2018(12): 248 − 251. doi: 10.3969/j.issn.1672-1667.2018.12.153
WANG H, ZHOU W M, MIN G Q, et al. Research progress in wire laser additive manufacturing[J]. China Metal Bulletin, 2018(12): 248 − 251. (in Chinese) doi: 10.3969/j.issn.1672-1667.2018.12.153
|
[44] |
肖宁. 基于深熔焊模式的激光增材制造新方法研究[D]. 北京: 北京工业大学, 2018.
XIAO N. Research on new method of laser additive manufacturing based on deep penetration welding mode[D]. Beijing, China: Beijing University of Technology, 2018.
|
[45] |
朱刚贤, 石拓, 傅戈雁, 等. 中空光光内送丝熔覆工艺参数对熔覆层质量的影响[J]. 应用激光, 2013, 33(4): 381 − 384.
ZHU G X, SHI T, FU G Y, et al. Effect of process parameters on the quality of the cladding layer by the inside-laser wire feeding[J]. Applied Laser, 2013, 33(4): 381 − 384.
|
[46] |
邹吉鹏, 黄瑞生, 武鹏博, 等. TC4钛合金低真空20 kW激光焊接特性研究[J]. 电焊机, 2023, 53(8): 28 − 35. doi: 10.7512/j.issn.1001-2303.2023.08.05
ZOU J P, HUANG R S, WU P B, et al. Study on low vacuum 20 kW laser welding characteristics of TC4 titanium alloy[J]. Electric Welding Machine, 2023, 53(8): 28 − 35. doi: 10.7512/j.issn.1001-2303.2023.08.05
|
[47] |
REISGEN U, OLSCHOK S, JAKOBS S, et al. Laser beam welding under vacuum of high grade materials[J]. Welding in the World, 2016, 60(3): 403 − 413.
|
[48] |
王化聪. TC4钛合金中厚板真空激光焊接特性分析[D]. 哈尔滨: 哈尔滨工业大学, 2022.
WANG H C. Analysis on vacuum laser welding characteristics of TC4 titanium alloy medium plate[D]. Harbin, China: Harbin Institute of Technology, 2022.
|
[49] |
DU F, ZHU J Q, DING X P, et al. Dimensional characteristics of Ti-6Al-4V thin-walled parts prepared by wire-based multi-laser additive manufacturing in vacuum[J]. Rapid Prototyping Journal, 2019, 25(5): 849 − 856.
|
[50] |
DING X P, MA H L, ZHANG Q, et al. Effect of annealing heat treatment on microstructure and corrosion behavior of Ti6Al4V alloy fabricated by multi-laser beam wire-feed additive manufacturing in vacuum environment[J]. Journal of Alloys and Compounds, 2022, 914: 165363.
|
[51] |
刘海涛, 王星. 真空环境下TC4激光熔丝增材制造工艺实验研究[J]. 精密成形工程, 2023, 15(11): 100 − 106.
LIU H T, WANG X. Experimental study on TC4 laser wire-based additive manufacturing process in vacuum environment[J]. Journal of Netshape Forming Engineering, 2023, 15(11): 100 − 106.
|
[52] |
FARAYIBI P K, ABIOYE T E, CLARE A T. A parametric study on laser cladding of Ti-6Al-4V wire and WC/W2C powder[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87(9-12): 3349 − 3358. doi: 10.1007/s00170-016-8743-9
|
[53] |
HUANG F X, JIANG Z H, LIU X M, et al. Microstructure and properties of thin wall by laser cladding forming[J]. Journal of Materials Processing Technology, 2009, 209(11): 4970 − 4976.
|
[54] |
THIJS L, VERHAEGHE F, CRAEGHS T, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V[J]. Acta Materialia, 2010, 58(9): 3303 − 3312.
|
[55] |
ADEBIYI D I, POPOOLA A P I. Mitigation of abrasive wear damage of Ti-6Al-4V by laser surface alloying[J]. Materials & Design, 2015, 74: 67 − 75.
|
[56] |
LIU S Y, SHIN Y C. Additive manufacturing of Ti6Al4V alloy: A review[J]. Materials & Design, 2019, 164: 107552.
|
[57] |
BAUFELD B, BRANDL E, VAN DER BIEST O. Wire based additive layer manufacturing: Comparison of microstructure and mechanical properties of Ti-6Al-4V components fabricated by laser beam deposition and shaped metal deposition[J]. Journal of Materials Processing Technology, 2011, 211(6): 1146 − 1158.
|
[58] |
SUN W Z, SHAN F H, ZONG N F, et al. Simulation of solidified β-grain for Ti-6Al-4V during wire laser additive manufacturing by three-dimensional cellular automaton method[J]. Modelling and Simulation in Materials Science and Engineering, 2021, 29(6): 065006.
|
[59] |
LIU S, BRICE C, ZHANG X L. Interrelated process-geometry-microstructure relationships for wire-feed laser additive manufacturing[J]. Materials Today Communications, 2022, 31: 103794. doi: 10.1016/j.mtcomm.2022.103794
|
[60] |
WILSON-HEID A E, WANG Z Q, MCCORNAC B, et al. Quantitative relationship between anisotropic strain to failure and grain morphology in additively manufactured Ti-6Al-4V[J]. Materials Science and Engineering: A, 2017, 706: 287 − 294.
|
[61] |
MANTRI S A, BANERJEE R. Microstructure and micro-texture evolution of additively manufactured β-Ti alloys[J]. Additive Manufacturing, 2018, 23: 86 − 98. doi: 10.1016/j.addma.2018.07.013
|
[62] |
张大越, 伍新泽, 王一甲, 等. 激光熔丝Ti6Al4V合金成形工艺、微观组织及强韧性研究[J]. 钢铁钒钛, 2024, 45(1): 49 − 56. doi: 10.7513/j.issn.1004-7638.2024.01.008
ZHANG D Y, WU X Z, WANG Y J, et al. Forming process, microstructure, strength and toughness of Ti6Al4V alloy by laser wire-feed additive manufacturing[J]. Iron Steel Vanadium Titanium, 2024, 45(1): 49 − 56. doi: 10.7513/j.issn.1004-7638.2024.01.008
|
[63] |
GUO J L, LIU Y, ZHAO Y, et al. Tailoring microstructure and mechanical anisotropy of laser-MIG hybrid additive manufacturing TC11 titanium alloy through solution aging treatment[J]. Journal of Materials Science, 2024, 59: 9625 − 9642. doi: 10.1007/s10853-024-09748-5
|
[64] |
宋栓军, 邱成鸿, 徐微, 等. 红外热像下激光熔丝成形过程冷却速率实时监测[J]. 红外与激光工程, 2022, 51(11): 199 − 207.
SONG S J, QIU C H, XU W, et al. Real time monitoring of cooling rate in laser metal-wire forming process under infrared thermography[J]. Infrared and Laser Engineering, 2022, 51(11): 199 − 207.
|