Citation: | Zheng Hong, Wang Wenyan. Numerical simulation in plate butt multipass welding of 7B05 Al-alloy[J]. WELDING & JOINING, 2017, (11): 14-17. |
[1] |
Goldak J, Chakravarti A, Bibby M. A new finite element model for welding heat sources[J]. Metallurgical Transactions B, 1984, 15(2): 299-305.
|
[2] |
Lindgren L E. Computational welding mechanics: thermomechanical and microstructural simulations[M]. Cambridge England: Woodhead Publishing Limited, 2007.
|
[3] |
Ying L, Guo F. Simulation and validation of welding residual stresses based on non-linear mixed hardening model[J]. Strain, 2012, 48(5): 406-414.
|
[4] |
Preston R V, Shercliff H R, Withers P J, et al. Physically based constitutive modelling of residual stress development in welding of aluminium alloy 2024[J]. Acta Materialia, 2004, 52(17): 4973-4983.
|
[5] |
Sonne M R, Tutum C C, Hattel J H, et al. The effect of hardening laws and thermal softening on modeling residual stresses in FSW of aluminum alloy 2024-T3[J]. Journal of Materials Processing Technology, 2013, 213(3): 477-486.
|
[6] |
Xu J J, Gilles P, Duan Y G, et al. Temperature and residual stress simulations of the NeT single-bead-on-plate specimen using SYSWELD[J]. International Journal of Pressure Vessels & Piping,2012(S99-100): 51-60.
|