Yu Yingfei, Guo Jichang, Zhu Zhiming. Development and research status of welding visualization technology[J]. WELDING & JOINING, 2017, (12): 4-8.
Citation: Yu Yingfei, Guo Jichang, Zhu Zhiming. Development and research status of welding visualization technology[J]. WELDING & JOINING, 2017, (12): 4-8.

Development and research status of welding visualization technology

More Information
  • Received Date: August 20, 2017
  • Available Online: June 01, 2024
  • Welding visualization process is consisted of three parts of visual detection, information processing and intelligent control. In this paper, different visualization methods corresponding to specific detection signals were summarized, such as image detection method, infrared thermal image method, non-destructive testing visualization based on weld defect imaging and measurement visualization based on molten pool vibration. Then, the advantages and disadvantages of active visual method and passive visual method were compared from different perspectives. The development methods of information processing software and the application of image processing technology in the welding visualization were introduced, and different intelligent control methods applied during the welding visualization process were described. A positive expectation and prospect for the development of welding visualization technology in the future was given.
  • [1]
    张刚.基于激光视觉的GTAW熔池三维自由表面动态行为的可视化[D].兰州:兰州理工大学硕士学位论文,2013.
    [2]
    谢志孟,高向东.基于视觉传感的焊缝跟踪技术研究和展望[J].焊接,2005(4):5-9.
    [3]
    沈彦闻.基于VTK的激光焊接数值模拟可视化系统的研究与开发[D].武汉:华中科技大学硕士学位论文,2009.
    [4]
    Song H S, Zhang Y M. Measurement and analysis of three dimensional specular gas tungsten arc weld pool surface[J]. Welding Journal, 2008, 87(4): 85-95.
    [5]
    Kim J S, Son Y T, Cho H S, et al. A robust method for vision-based seam tracking in robotic arc welding[C]. Proceeding of the International Symposium on Intelligent Control, Monterey, CA, USA, 1995: 363-368.
    [6]
    Zhou L, Lin T, Chen S B. Autonomous acquisition of seam coordinates for arc welding robot based on visual sensoring[J]. Journal of Intelligent and Robotic System, 2006, 47(3): 239-255.
    [7]
    鲁建波,徐培全,姚舜,等.圆形扫描结构光传感器的标定和焊缝检测[J].焊接学报,2006,27(4):53-56.
    [8]
    Wellington S J, Crowder R M. A non-tactile sensor for seam tracking and vision application[C]. IEEE Control’94 Conference Publication, Coventry, UK, 1994: 822-826.
    [9]
    Ohshima K, Yamamoto M, Tanii T, et al. Digital control of torch position and weld Pool in MIG welding using image processing device[J]. IEEE Transactions on Industry Applications, 1992, 28(3): 607-612.
    [10]
    王建军,林涛,陈善本,等.铝合金交流钨极氩弧焊熔池图像传感方法[J].上海交通大学学报,2002,6(5):21-26.
    [11]
    李鹏九.焊接过程弧光传感的应用基础研究[D].哈尔滨:哈尔滨工业大学博士学位论文,1997.
    [12]
    Lee S K. A study on automatic seam tracking in pulsed laser edge welding by using a vision sensor without an auxiliary light source[J]. Journal of Manufacturing Systems, 2002, 21(4): 302-315.
    [13]
    Shigeta M, Takahiro I, Manabu T, et al. Qualitative and quantitative analyses of arc characteristics in SMAW[J]. Welding in the World, 2016, 60(2): 355-361.
    [14]
    郭波.基于宽动态视觉传感的GMAW机器人焊接偏差实时识别及电弧监测研究[D].广州:华南理工大学博士学位论文,2016.
    [15]
    都东,邹怡蓉,常保华.焊接视觉传感及自动跟踪技术的现状与发展[J].航空制造技术,2010(9):40-42.
    [16]
    Sadek C, Alfaro A, Fernand Diaz Franco. Exploring infrared sensing for real-time welding defects monitoring in GTAW[J]. Journal of Sensors, 2010, 10(6): 5962-5974.
    [17]
    Kosovo Y. Relation between surface temperature and reverse side bead with in TIG welding of thin mild steel plate[J]. Journal of Japan Welding Society, 1982, 51(3): 52-55.
    [18]
    潘际銮,陈强,吴志强. MIG焊的熔透控制[J].焊接学报,1991,12(1):53-58.
    [19]
    路浩,邢立伟,赵新玉.焊接缺陷高频显微超声可视化扫查检测[J].焊接,2014(9):19-23.
    [20]
    罗志伟,张驰,刘斌.焊缝横向裂纹声波衍射信号特征与采集方法[J].焊接,2016(6):26-29.
    [21]
    李衍.超声相控阵检测焊缝三维可视化[J].中国特种设备安全,2013,37(12):1-6.
    [22]
    崔巍,戴光,龙飞飞,等.钢板对接焊缝漏磁检测可视化方法[J].无损检测,2013,35(5):8-11.
    [23]
    崔巍,戴光,李伟,等.基于漏磁成像的焊缝缺陷检测可视化方法研究[J].现代制造工程,2014(2):109-114.
    [24]
    Renrrick R J. Real-time control of GTA weld size by controlling pool oscillation frequency[J]. CWR Technical Report, 1983(6): 110-115.
    [25]
    顾玉芬,杜雷明,李春凯,等.弧光法与激光视觉法检测熔池振荡特征的对比分析[J].焊接学报,2016,37(9):18-22.
    [26]
    石端虎,刚铁,李新彦,等.基于Pro/E二次开发的焊缝缺陷空间位置可视化[J]. 热加工工艺,2009(23):155-157.
    [27]
    季虎,孙即祥,邵晓芳,等.图像边缘提取方法及展望[J].计算机工程与应用,2004,40(14):70-73.
    [28]
    Law T, Itoh H, Seki H. Image filtering, edge detection, and edge tracing using fuzzy reasoning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(5): 481-491.
    [29]
    Peng J, Chen Q, Lu J, et al. Real time optimization of robotic arc welding based on machine vision and neural networks[C]. 24th Annual Conference of the IEEE Industrial-Electronics-Society, Aachen, Germany, 1998.
    [30]
    岳宏,孙立新,李慨,等.基于自适应共振人工神经网络的焊缝类型自动识别方法[J].中国机械工程,1999,10(8):1-7.[31]赵冬斌,陈善本,吴林.填丝脉冲GTAW熔池形状定义和图像处理[J].焊接学报,2001,22(2):5-8.
    [32]
    Jezersek M, Polajnar I, Diaci J. Feasibility study of in-process weld quality control by means of scanning laser profilometry[J]. Proc Spie, 2007, 6616(6): 445-449.
    [33]
    林树清,袁小川.模糊逻辑控制在焊接中的应用进展[J].山东冶金,2004,26(6):54-56.
    [34]
    Tarng Y S, Tsai H L, Yeh S S. Modeling, optimization and classification of weld quality in tungsten inert gas welding[J]. International Journal of Machine Tools and Manufacture, 1999, 39(9): 1427-1438.
    [35]
    Shi Y, Fan D, Huang A, et al. Visual sensing and intelligent control of weld pool dynamics in aluminum alloy pulsed MIG welding process[C]. ICMIT, Chongqing, China, 2005.
    [36]
    高向东,黄石生,余英林.机器人焊缝跟踪神经网络控制研究[J].机械工程学报,2000,36(5):7-10.
    [37]
    陈善本,赵冬斌,娄亚军.脉冲GTAW焊缝成形智能控制方法[J].自动化学报,2003,1(29):130-134.
  • Related Articles

    [1]Wu Zhenyong, Jiang Fan, Liu Dong. Design and implementation of intelligent welding procedure qualification system for marine boiler[J]. WELDING & JOINING, 2023, (10): 55-59, 64. DOI: 10.12073/j.hj.20220727002
    [2]Liu Ying, Liu Wei, Gao Jinqiang. Image processing and feature extraction of fillet welds of prismatic pipe and flange[J]. WELDING & JOINING, 2022, (11). DOI: 10.12073/j.hj.20220111001
    [3]Ren Libin, Zhu Ping, Zhao Chong, Yang Wang, Shi Yifeng, Zhang Guoliang. Robot intelligent welding for round parts in a power plant[J]. WELDING & JOINING, 2022, (5). DOI: 10.12073/j.hj.20211101001
    [4]Deng Gang, Ma Zhi, Chen Weiguang, Liu Yu, Chen Huabin. On-line intelligent recognition of typical welding defects drove by multi-source information[J]. WELDING & JOINING, 2021, (12): 53-59. DOI: 10.12073/j.hj.20211026001
    [5]SHOU Mingyao, YU Huanwei, ZHU Yuan, YU Xiang. Discussion on key factors of pressure vessel welding intelligence[J]. WELDING & JOINING, 2020, (11): 50-55. DOI: 10.12073/j.hj.20200703001
    [6]ZHU Zhiming, CHENG Shijia, FU Pingpo, YU Yingfei. Research and progress on behavior characteristics and stability evaluation of welding arc[J]. WELDING & JOINING, 2018, (11): 1-6,10.
    [7]ZHU Zhiming, FU Pingpo, YU Yingfei, CHENG Shijia. Characterization of arc fluctuation behavior based on image and effects of shielding gas flow rate[J]. WELDING & JOINING, 2018, (10): 1-4,38.
    [8]SUN Bowen, ZHU Zhiming, GUO Jichang, YU Yingfei. Image processing technology of visual sensor based on laser structured light[J]. WELDING & JOINING, 2018, (9): 10-14.
    [9]Wang Guoan1, Dai Jianshu2, Huang Haibo1, Liu Xiaohui3, Hou Guoqing1. Exploration on training mode of welding automation talents in intelligent manufacturing environment[J]. WELDING & JOINING, 2017, (7): 70-72.
    [10]Jiao Zhi, Tan Zhaobin, Geng Shufang, Luo Linyi, Liang Xing, Zhang Yani, Sun Pengfei, Wang Gang, An Jian. Laser-arc hybrid welding quality monitoring system for pipeline based on infrared thermal imaging analyzed technology[J]. WELDING & JOINING, 2017, (1): 60-63.

Catalog

    Article views (33) PDF downloads (46) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return