Liu Haihua, Bai Yunlong, Zhuo Yimin, Li Tianxu. Research status of additional electromagnetic field assisted welding[J]. WELDING & JOINING, 2017, (10): 12-18.
Citation: Liu Haihua, Bai Yunlong, Zhuo Yimin, Li Tianxu. Research status of additional electromagnetic field assisted welding[J]. WELDING & JOINING, 2017, (10): 12-18.

Research status of additional electromagnetic field assisted welding

More Information
  • Received Date: May 16, 2017
  • Available Online: May 27, 2024
  • Additional electromagnetic field assisted welding has become a new technology in recent years. It can operate on the welding process by a non-contact way. The electromagnetic force can improve the performance of the weld, the production efficiency, and the crystallization of the microstructures by influences the low of molten pool, the arc shape and the transition behavior of molten droplet. In this paper, it was summarized that different scholas at home and abroad used different kinds of electromagnetic field to influence the fluid field of molten pool, the welding arc and the transition behavior of molten droplet, which mainly include the transverse magnetic field. the longitudinal magnetic field, and sharp angle magnetic field, and so on. But the physical process of are deposition forming under the action of electromagnetic is extremely complex, the physics mechanisms of heat, force and electromagnetic field in the welding process have not been completely analyzed the theoretical and numerical studies are urgently needed.
  • [1]
    陈丙森, 陈强. 焊接先进技术与自动化—第7届全国焊接学术会议论文综述[J]. 中国机械工程, 1993(6): 54 -55.
    [2]
    贺优优. 磁控焊接电弧特性和熔滴过渡机理研究[D]. 沈阳: 沈阳工业大学硕士学位论文, 2008.
    [3]
    Dar Y A, Singh C, Farooq Y. Effects of external magnetic field on welding arc of shielded metal are welding [J]. Indian Journal of Applied Research, 2011, 4(4): 200-203.
    [4]
    Yin X, Gou J, Zhang J, et al. Numerical study of arc plasmas and weld pools for GTAW with applied axial magnetic fields[J]. Journal of Physics D: Applied Physics, 2012, 45(28): 285203-285215.
    [5]
    Chen T, Zhang Xiaoning, Bai B, et al. Numerical study of DC argon arc with axial magnetic fields[J]. Plasma Chemistry and Plasma Processing, 2015, 35(1): 61 -74.
    [6]
    洪波, 马金海, 李湘文, 等. 埋弧焊磁控电弧焊缝跟踪系统中的横向磁场ANSYS模拟[J]. 焊接学报, 2012, 33(5): 87-92.
    [7]
    常云龙, 路林, 李英民, 等. 磁控 TIG高速焊焊缝成形机理[J]. 焊接学报, 2013, 34(6): 1-4.
    [8]
    Yang M, Qi B, Cong B, et al. Study on electromagnetic force in arc plasma with UHFP-GTAW Of Ti-6Al-4V[J]. IEEE Transactions on Plasma Science, 2013, 41(9): 2561-2568.
    [9]
    武传松, 王林, 陈姬, 等. 高速 GMAW驼峰焊道的产生机理与抑制技术[J]. 焊接, 2016(7): 4-13, 69.
    [10]
    Ando K, Nishikawa J, Yamanouchi N. Effects of magnetic field on bead formation in TIG arc[J]. Journal of Japan Welding Society, 1968, 37(3): 43-48.
    [11]
    Kou S, Le Y. Alternating grain orientation and weld solidification cracking [J]. Metallurgical & Materials Transactions A, 1985, 16(10): 1887-1896.
    [12]
    刘政军, 温晓波, 苏允海. 外加磁场电流对镁合金焊接接头力学性能的影响[J]. 沈阳工业大学学报, 2012, 34(3): 258-262.
    [13]
    Lee C K, Lee W. The effect of magnetic fields for laser welding process using carbon steel (retraction of vol 14, pg1915, 2013)[J]. International Journal of Precision Engineering and Manufacturing, 2014, 15(3): 587-587.
    [14]
    孟德字. 电磁辅助电弧直接成形数值模拟[D]. 武汉: 华中科技大学硕士学位论文, 2012.
    [15]
    王增辉, 陈欢, 杨嵩. 磁场作用下三维方腔内液态金属自然对流的数值模拟[J]. 中国科学院大学学报, 2013, 30(4): 472-477.
    [16]
    Marcel Bachmann, Vjaceslav Avilov, Andrey Gumenyuk, et al. Multi-physics process simulation of static magnetic field in high power laser beam welding of aluninum[C]. Excerpt From the Proceeding of 2012 COMSOL Conference Milan, 2012: 205-212.
    [18]
    Shoichi M, Yukio M, Koki T, et al. Study on the application for electromagnetic controlled molten pool welding process in overhead and flat position welding[J]. Science and Technology of Welding and Joining, 2013, 18(1): 38-44.
    [19]
    Ansari Y A, Khan M I, Alam S. To study the effect of magnetic field on bead geometry, mechanical properties and welding speed of air and water welds[J]. International Journal for Science and Advance Research In Technology, 2015, 1(8): 25-30.
    [20]
    Avilov V V, Gumenyuk A, Lammers M, et al. PA position full penetration high power laser beam welding of up to 30mm thick AlMg3 plates using electromagnetic weld pool support[J]. Science and Technology of Welding and Joining, 2012, 17(2): 128-133.
    [21]
    王军, 陈树君, 卢振洋,等. 磁场控制横向MAG焊接焊缝成型工艺的研究[J]. 北京工业大学学报, 2003, 29(2): 147-150.
    [22]
    岳建锋, 李亮玉, 刘文吉, 等. 基于外加高频交变磁场下向MAG焊熔池成形控制[J]. 机械工程学报, 2013, 49(8): 65-70.
    [23]
    殷咸青, 罗键. 纵向磁场参数对LD10CS铝合TIG焊焊缝组织的影响[J]. 西安交通大学学报, 1999, 33(7): 71-74.
    [24]
    苏允海, 蒋焕文, 秦昊, 等. 磁场作用下镁合金焊接接头力学性能的变化[J]. 焊接学报, 2013, 34(4): 85-88.
    [25]
    程江波. 等离子弧堆焊层组织及性能的磁控[D]. 沈阳: 沈阳工业大学硕士学位论文, 2006.
    江淑园, 陈焕明, 刘志凌. CO2焊接短路过渡控制的研究[J]. 航空维修与工程, 2003(6): 48-50.
    [27]
    杨超. 磁控MIG/MAG焊熔滴过渡行为研究[D]. 南昌: 南昌航空大学硕士学位论文, 2014.
  • Related Articles

    [1]HE Wenhu, ZHANG Hongchang, LI Yinan, ZHANG Hongtao, PENG Zilong, ZHANG Qian. Effect of welding parameters on arc shape and weld form of KTIG-MIG hybrid welding[J]. WELDING & JOINING, 2025, (2): 1-7. DOI: 10.12073/j.hj.20240923004
    [2]Feng Dong, Zhou Weitao, Jie Wenfeng. Effect of welding process on formation of weld and bearing capacity of thin-walled ring titanium alloy[J]. WELDING & JOINING, 2023, (4): 55-59. DOI: 10.12073/j.hj.20220720005
    [3]Wang Hailong, Yang Jianwei, Huang Songtao, Jiao Xiangdong. Effect of pulse frequency in high pressure environment on weld formation and properties of ultra-high frequency pulsed TIG welding joint[J]. WELDING & JOINING, 2022, (6). DOI: 10.12073/j.hj.20220215002
    [4]Chai Tingxi, Xu Hongtong, Wang Xijing, Zhang Liangliang, Yan Liqin. Effect of keyhole mode plasma arc welding process on formation of weld and mechanical properties of N6 nickel alloy[J]. WELDING & JOINING, 2021, (8): 29-36. DOI: 10.12073/j.hj.20210519001
    [5]JIANG Bao, LEI Zhen, HUANG Ruisheng, YANG Yicheng, LIANG Xiaomei. Formation of weld by high-power fiber laser-MAG hybrid welding[J]. WELDING & JOINING, 2020, (6): 5-11,32. DOI: 10.12073/j.hj.20200424004
    [6]NIE Xin, LI Xiaoyu, HUANG Ruisheng, ZHOU Jun, LIANG Xiaomei. Weld formation of aluminum alloy by 10 kW level laser-MIG arc hybrid welding[J]. WELDING & JOINING, 2020, (2): 24-27,37. DOI: 10.12073/j.hj.20200103002
    [7]YANG Shuo, SONG Wenqing, QU Shen, ZHOU Heng, LEI Zhenglong. Experimental study on laser weld appearance of thin-walled TC4 titanium alloy[J]. WELDING & JOINING, 2019, (1): 5-11. DOI: 10.12073/j.hj.20180828005
    [8]LIN Sanbao, LIU Shuo, CAI Xiaoyu, JI Xiangru. Influence of ternary shielding gas composition on weld forming of narrow gap tandem wires GMAW[J]. WELDING & JOINING, 2018, (2): 1-4,18.
    [9]Jiang Siyuan1, Li Xiaopeng2, Wang Ting1, Zhang Binggang2. Investigation on bead appearance of Ni-Ni3Si hypereutectic alloy by electron beam welding[J]. WELDING & JOINING, 2017, (7): 19-22.
    [10]Zhang Ling, Xu Chuangwen, Shi Zhicheng, Jing Hongbin, Zhang Bing. Flat welding process design and analysis of the welding parameters of magnetic drive pump isolation sets[J]. WELDING & JOINING, 2017, (1): 32-35.

Catalog

    Article views (61) PDF downloads (53) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return