Research status of rotary friction welding of aluminum/steel dissimilar metals
-
摘要: 根据铝/钢异种金属焊接冶金特点及旋转摩擦焊接工艺特点,分析认为旋转摩擦焊最适合铝/钢异种金属轴对称件焊接的工艺。分别介绍了连续驱动摩擦焊和惯性摩擦焊接工艺对铝/钢异种金属焊接接头的组织和性能的影响。总结了铝/钢异种金属摩擦焊接技术研发中亟待解决的主要科学问题,铝/钢旋转摩擦焊过程中摩擦界面及其附近剧烈的塑性流变对IMCs生成的影响规律和机制需要进一步的研究;需要开发相应的工艺措施促进铝/钢接头界面上形成以Fe-Al IMCs为标志的冶金结合,并使IMCs层厚度均匀化。最终指明,研究揭示铝/钢摩擦界面IMCs生成机理、相的组成、形态、分布等冶金行为,对铝/钢旋转摩擦焊接头的组织性能调控具有重要意义,也是铝/钢异种金属焊接结构性能保证的理论基础。Abstract: The reasons for poor weldability of aluminum/steel dissimilar metal welding metallurgy and rotary friction welding process, it was considered that rotary friction welding was the most suitable welding process of aluminum/steel dissimilar metal axisymmetric parts. Effects of continuous drive friction welding and inertia friction welding on the microstructure and properties of aluminum/steel dissimilar metals joints were introduced respectively. The main scientific problems that urgently need to be solved in the development of metal friction welding technology were summarized as followed. In rotary friction welding of aluminum/steel, the influence law and mechanism of violent plastic flow on IMCs generation at the friction welded interface and its vicinity need further study. It was necessary to develop a corresponding process to promote the formation of Fe-Al IMCs as the symbol of metallurgical bonding on the interface of aluminum/steel joint and to homogenize the thickness of IMCs layer. In the end, the study revealed the metallurgical behavior of aluminum/steel friction welded interface IMCs such as formation mechanism, phase composition, morphology and distribution, which were of great significance to control microstructure and properties of aluminum/steel rotary friction welded joint, and which were also the theoretical basis to guarantee the performance of aluminum/steel dissimilar metals welding structure.
-
-
[1] 曲文卿, 董峰, 齐志刚, 等. 异种材料的先进连接技术[J]. 航空制造技术, 2006(12): 32-34. [2] Huang D, Wang Z, Du D. Structural dynamics of the large thrust liquid rocket engines [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2019, 49(2): 24503.
[3] 刘宝昌, 李闯, 张弛, 等. 大直径高强度耐磨铝合金钻杆研究[C]. 乌鲁木齐:第十九届全国探矿工程(岩土钻掘工程)学术交流年会, 2017(379): 268-272. [4] 秦国梁, 武传松. 铝合金/钢异种材料熔钎焊接工艺及其研究现状[J]. 机械工程学报, 2016, 52(24): 24-35. [5] 雷振, 秦国梁, 林尚扬, 等. 铝与钢异种金属焊接的研究与发展概况[J]. 焊接, 2006(4): 16-20. [6] Khalfallah F, Boumerzoug Z, Selvarajan R, et al. Optimization by RSM on rotary friction welding of AA1100 aluminum alloy and mild steel [J]. International Review of Applied Sciences and Engineering, 2020, 11 (1): 34-42.
[7] Torun O. Friction welding of al 7075 alloy and 316L stainless steel [J]. The Online Journal of Science and Technology, 2017, 7(2): 56-59.
[8] Deepak Kumar M, Venkatakrishnan P G. Optimization on friction welding of aluminium alloy 6082 T6 and austenitic stainless steel 304 [J]. International Journal of Engineering Development and Research, 2014, 2(1): 522-527.
[9] Paventhan R, Lakshminarayanan P R, Balasubramanian V. Prediction and optimization of friction welding parameters for joining aluminium alloy and stainless steel [J]. Transactions of Nonferrous Metals Society of China, 2011, 21(7): 1480-1485.
[10] Sahin M, Misirli C, Selvi S. Optimization of the process parameters of friction-welded St-Al joints [J]. Materiali in Tehnologije, 2019, 53(2): 207-213.
[11] Kimura M, Suzuki K, Kusaka M, et al. Effect of friction welding condition on joining phenomena, tensile strength, and bend ductility of friction welded joint between pure aluminium and AISI 304 stainless steel [J]. Journal of Manufacturing Processes, 2017(25): 116-125.
[12] Kimura M, Suzuki K, Kusaka M, et al. Effect of friction welding condition on joining phenomena and mechanical properties of friction welded joint between 6063 aluminium alloy and AISI 304 stainless steel [J]. Journal of Manufacturing Processes, 2017(26): 178-187.
[13] Kimura M, Ishii H, Kusaka M, et al. Joining phenomena and joint strength of friction welded joint between pure aluminium and low carbon steel[J]. Science and Technology of Welding and Joining, 2009, 14(5): 388-395.
[14] Vyas H, Mehta K P, Badheka V, et al. Pipe-to-pipe friction welding of dissimilar Al-SS joints for cryogenic applications [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(2): 96.
[15] Kimura M, Kusaka M, Kaizu K, et al. Friction welding technique and joint properties of thin-walled pipe friction-welded joint between type 6063 aluminum alloy and AISI 304 austenitic stainless steel [J]. The International Journal of Advanced Manufacturing Technology, 2016, 82(1-4): 489-499.
[16] Fukumoto S, Tsubakino H, Okita K, et al. Friction welding process of 5052 aluminium alloy to 304 stainless steel [J]. Materials Science and Technology, 2013, 15(9): 1080-1086.
[17] Fukumoto S, Tsubakino H, Okita K, et al. Amorphization by friction welding between 5052 aluminum alloy and 304 stainless steel [J]. Scripta Materialia, 2000, 42(8): 807-812.
[18] Fukumoto S, Tsubakino H, Aritoshi M, et al. Dynamic recrystallisation phenomena of commercial purity aluminium during friction welding [J]. Materials Science and Technology, 2002, 18(2): 219-225.
[19] Shubhavardhan R N, Surendran S. Friction welding to join stainless steel and aluminum materials [J]. International Journal of Metallurgical & Materials Science and Engineering, 2012, 2(3): 53-73.
[20] Koushik P V, Avinash D. Experimental investigations of friction welding using aluminum with mild steel [J]. International Research Journal of Engineering and Technology, 2016, 3: 680-685.
[21] Yilbas B S, Sahin A Z, Kahraman N, et al. Friction welding of St-A1 and A1-Cu materials [J]. Journal of Materials Processing Technology, 1995, 49: 431-443.
[22] Herbst S, Aengeneyndt H, Maier H J, et al. Microstructure and mechanical properties of friction welded steel-aluminum hybrid components after T6 heat treatment [J]. Materials Science and Engineering: A, 2017, 696: 33-41.
[23] 冯健, 韩靖, 张雪梅, 等. 7A04铝合金/304不锈钢连续驱动摩擦焊及焊后热处理[J]. 焊接学报, 2018, 39(8): 11-17. [24] Wei Y, Sun F. Microstructures and mechanical properties of Al/Fe and Cu/Fe joints by continuous drive friction welding [J]. Advances in Materials Science and Engineering, 2018: 1-8.
[25] Y
lmaz M, Çöl M, Acet M. Interface properties of aluminum/steel friction-welded components [J]. Materials Characterization, 2002, 49(5): 421-429.
[26] Kobayashi A, Machida M, Hukaya S, et al. Friction welding characteristics of Al-Mg aluminum alloy (A5056) and carbon steel (S45C) [J]. JSME International Journal, 2003, 10(3): 11-16.
[27] Sahin M. Joining of stainless-steel and aluminium materials by friction welding [J]. The International Journal of Advanced Manufacturing Technology, 2009, 41(5-6): 487-497.
[28] Rutherford J L, Prangnell P B. Optimisation of inertia friction welding steel to 6061 aluminium [C]. John Wiley & Sons Ltd., Aachen, Germany, 2008: 1972-1978.
[29] Ashfaq M, Sajja N, Khalid Rafi H, et al. Improving strength of stainless steel/aluminum alloy friction welds by modifying faying surface design [J]. Journal of Materials Engineering and Performance, 2013, 22(2): 376-383.
[30] Wan L, Huang Y X. Friction welding of AA6061 to AISI 316L steel: characteristic analysis and novel design equipment [J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(9-12): 4117-4128.
[31] Irawan Y S, Prasetyo D, Widodo T D, et al. Increased tensile strength of dissimilar friction weld joint weld joint of round bar A6061/S15C using upset force and one-side chamfer angle [J]. Journal of Environmental Engineering & Sustainable Technology, 2019, 6(1): 9-15.
[32] Ambroziak A, Korzeniowski M, Kustroń P, et al. Friction welding of aluminium and aluminium alloys with steel [J]. Advances in Materials Science and Engineering, 2014: 981653.
[33] Reddy M G, Rao S A, Mohandas T. Role of electroplated interlayer in continuous drive friction welding of AA6061 to AISI 304 dissimilar metals [J]. Science and Technology of Welding and Joining, 2008, 13(7): 619-628.
[34] Meshram S D, Madhusudhan Reddy G. Friction welding of AA6061 to AISI 4340 using silver interlayer [J]. Defence Technology, 2015, 11(3): 292-298.
[35] Kannan P, Balamurugan K, Thirunavukkarasu K. Influence of silver interlayer in dissimilar 6061-T6 aluminum MMC and AISI 304 stainless steel friction welds [J]. The International Journal of Advanced Manufacturing Technology, 2015, 81(9-12): 1743-1756.
[36] Kimura M, Kusaka M, Kaizu K, et al. Simultaneous friction welding and characterization of joints between 7075-T6 Al alloy and low-carbon steel using pure Al as an insert metal [J]. Journal of Materials Engineering and Performance, 2019, 28(12): 7726-7736.
[37] Dong H G, Li Y G, Li P, et al. Inhomogeneous microstructure and mechanical properties of rotary friction welded joints between 5052 aluminum alloy and 304 stainless steel [J]. Journal of Materials Processing Technology, 2019, 272: 17-27.
[38] 王世路. 铝/钢异种金属惯性摩擦焊接头组织与性能[D]. 济南: 山东大学硕士学位论文, 2020. [39] 张丽娜, 赵衍华, 张田仓, 等. 2219铝合金与不锈钢惯性摩擦焊接接头组织与力学性能[J]. 电焊机, 2017, 47(11): 100-105. [40] 赵衍华, 张丽娜, 孙秀京, 等. LF6铝合金与不锈钢异种金属惯性摩擦焊工艺技术研究[J]. 宇航材料工艺, 2016, 46(5): 68-71. [41] 马肖飞. 铝合金/不锈钢异种金属轴向摩擦焊接工艺[D]. 济南: 山东大学硕士学位论文, 2018. [42] Taban E, Gould J E, Lippold J C. Dissimilar friction welding of 6061-T6 aluminum and AISI 1018 steel: properties and microstructural characterization [J]. Materials & Design, 2010, 31(5): 2305-2311.
[43] Taban E, Gould J E, Lippold J C. Characterization of 6061-T6 aluminum alloy to AISI 1018 steel interfaces during joining and thermo-mechanical conditioning [J]. Materials Science and Engineering: A, 2010, 527(7-8): 1704-1708.
-
期刊类型引用(8)
1. 陈杰,郑革,董武峰,胡天寒,丁凯,高玉来. 旋转摩擦焊铝-铜接头的显微组织与力学性能. 上海金属. 2024(01): 30-37 . 百度学术
2. 丁凯,刘伟,敖余达,余乃铨,董武峰,胡天寒,高玉来. 焊接工艺参数对旋转摩擦焊铝-铜接头弯曲性能的影响. 上海金属. 2024(02): 26-33 . 百度学术
3. 王浩,董彬,秦国梁. 铝/钢异种金属旋转摩擦焊接技术研究进展. 航空制造技术. 2024(10): 77-87 . 百度学术
4. 许辉,夏佩云,张选明,闫学文,朱帅,封小松,袁雅俊,周佳俊. 不锈钢与6061铝合金旋转摩擦焊接接头组织与力学性能. 航空制造技术. 2023(11): 66-70 . 百度学术
5. 赵衍华,张丽娜,蔡菁青,王炜,郭盛斌,沈岩. LD2铝合金与不锈钢惯性摩擦焊及高低温循环试验. 焊接学报. 2023(08): 123-128+136 . 百度学术
6. 张春波,袁明强,周军,全威,孙佳佳,乌彦全,王志永. 42CrMo/GH4169异种金属惯性摩擦焊工艺. 焊接. 2023(08): 6-13 . 本站查看
7. 胡茂辉,陈继兵,李瑞迪,支盛兴,刘博文. 钛/铝异种金属旋转摩擦焊接接头界面组织与性能. 焊管. 2023(11): 26-33 . 百度学术
8. 范治松,王启程,黄佳成,刘大海,邓将华. 1060Al/SS304板材铝箔气化焊接界面形成过程数值模拟. 精密成形工程. 2021(05): 92-99 . 百度学术
其他类型引用(11)
计量
- 文章访问数: 49
- HTML全文浏览量: 8
- PDF下载量: 14
- 被引次数: 19