爆炸焊接参数对钽/304不锈钢界面波形影响的数值模拟
Numerical simulation of influence of explosive welding parameters on interface waveform of tantalum/304 stainless steel
-
摘要: 为了研究爆炸焊接参数对界面波形的影响,对钽/304不锈钢的爆炸焊接进行了二维数值模拟,模拟得到了不同碰撞角和碰撞速度的界面波。由输出模拟界面处波形图可观测到钢在爆轰过程中被拉长且在涡旋处强烈弯曲;测量波的波长以及波幅发现,当碰撞速度一定时,比波长由小到大依次为碰撞角12.2°、碰撞角14.1°、碰撞角16.4°;碰撞角一定时,碰撞速度为633 m/s界面波长和波幅小于碰撞速度为735 m/s时的界面波长和波幅;速度水平方向的数值大小与波长数值的大小一致性较好,速度竖直方向的数值大小与波幅数值的大小一致性较好。结果表明,结合界面处和界面附近的钢侧均发现了明显的解理断裂特征;界面处比波长与碰撞角呈正相关;碰撞速度越大,界面波长和波幅也越大;速度水平方向的分量决定波长数值的大小,速度竖直方向的分量决定波幅数值的大小。创新点: (1)结合光滑粒子流体动力学方法,采用单参数变化方法研究碰撞角和碰撞速度对界面波形的影响。(2)研究了速度的水平分量以及竖直分量对界面波形的影响。Abstract: In order to study the influence of explosive welding parameters on the interface waveform, the two-dimensional numerical simulation of explosive welding was used in this paper.The numerical simulation of tantalum/304 stainless steel was carried out, and the interface waves under different collision angles and collision speeds were obtained. By outputting the waveform diagram at the simulation interface, it can be observed that the steel is elongated and strongly bent at the vortex in the detonation process. The wavelength and amplitude of the wave are measured, and it is found that when the collision velocity is constant, the specific wavelength at the collision angle of 12.2° < the specific wavelength at the collision angle of 14.1°< the specific wavelength at the collision angle of 16.4°; when the impact angle is fixed, the interface wavelength and amplitude at the impact velocity of 633 m/s are smaller than those at the impact velocity of 735 m/s; the numerical value in the horizontal direction of velocity is in good agreement with the wavelength value, and the numerical value in the vertical direction of velocity is in good agreement with the amplitude value. The results show that obvious cleavage fracture characteristics are found at the interface and the steel side near the interface. The specific wavelength at the interface is positively correlated with the collision angle; the greater the collision speed, the greater the interface wavelength and amplitude; the horizontal component of velocity determines the wavelength value, and the vertical component of velocity determines the amplitude value.Highlights: (1)Effect of collision angle and velocity on interface waveform is studied by combining smooth particle hydrodynamics method and using single parameter variation method.(2)The influence of horizontal component and vertical component of velocity on interface waveformare studied.
-
Keywords:
- collision angle /
- explosive welding /
- numerical simulation /
- wavelength and amplitude
-
-
[1] Wei D B, Chen X H, Zhang P Z, et a1. Plasma surface tantalum alloying on titanium and its corrosion behavior in sulfuric acid and hydrochloric acid[J]. Applied Surface Science, 2018, 441: 448-457. [2] Danzig J F, Dempsey R M, Conti A B L. Characteristics of taetalided and hafiaided samples in highly corrosive electrolyte solutions[J].Corrosion-Houston Tx-,1971,27(2):55-62. [3] Gladczuk L, Patel A, Paur C, et a1. Tantalum films for protective coatings of steel[J].Thin Solid Films, 2004, 467(1-2): 150-157. [4] Yang M, Ma H, Yao D, et al. Experimental study for manufacturing 316L/CuCrZr hollow structural component[J].Fusion Engineering and Design, 2019, 144: 107-118. [5] Nichols R W. Explosive welding, forming and compaction[J]. International Journal of Pressure Vessels and Piping, 1984, 15(1): 76-77. [6] 陈代果, 姚勇, 邓勇军, 等. 炸药覆盖层厚度对爆炸焊接的影响[J].火炸药学报, 2019, 42(1):52-57. [7] 田晓东, 王小苗, 丁旭, 等. 钛/铝复合板爆炸焊接技术研究进展[J]. 钛工业进展, 2020, 37(6): 34-40. [8] 李星昆, 何建萍. 复合板爆炸焊工艺研究现状及展望[J]. 轻工机械, 2021, 39(4): 1-4. [9] 唐玉成. 爆炸焊接参数对界面波形及金相组织影响的研究[D]. 武汉: 武汉科技大学硕士学位论文, 2017. [10] 卞超, 王凤英, 卜杉杉, 等. 钛-钢板爆炸焊接的影响因素及炸药配方[J].工程爆破, 2016, 22(1): 73-76. [11] 张蕾. S41500-Q345C爆炸焊接界面波试验探讨[J].材料开发与应用, 2001(6): 8-12. [12] 李选明, 李平仓, 裴大荣. 爆炸焊接工艺参数与波形参数的关系[J].焊接, 2000(3): 18-20. [13] 王治平, 何智, 付明林, 等. 临界条件下爆炸焊接的覆板速度[J].高压物理学报, 1996(2): 43-46. [14] 张振逵, 吴绍尧. 爆炸焊接参数的试验研究[J]. 力学与实践, 1981(1): 50-54. [15] 王小绪, 何勇. 爆炸焊接参数对钛钢复合板界面波的影响[J]. 南京理工大学学报, 2013, 37(2):215-218. [16] Chen Xiang, Daisuke Inao, Shigeru Tanaka, et al. Comparison of explosive welding of pure titanium/SUS 304 austenitic stainless steel and pure titanium/SUS 821L1 duplex stainless steel[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(9): 2687-2702. [17] Liu G R, Liu M B. 光滑粒子流体动力学——一种无网格粒子法[M]. 韩旭, 译. 长沙: 湖南大学出版社, 2005. [18] 程国强, 李守新. 金属材料在高应变率下的热粘塑性本构模型[J]. 弹道学报, 2004, 16(4): 18-22. [19] 张建臣.碰撞角对爆炸复合材料界面状态的影响[J]. 实验力学, 2007(1): 63-68. -
期刊类型引用(1)
1. 袁嘉欣,邵飞,白林越,徐倩,孙斌,王敬涛. 基于试验和数值模拟的TC1/1060/6061爆炸焊接复合板界面分析. 焊接学报. 2023(09): 81-87+133-134 . 百度学术
其他类型引用(3)
计量
- 文章访问数: 57
- HTML全文浏览量: 12
- PDF下载量: 40
- 被引次数: 4