• 中国科技核心期刊(中国科技论文统计源期刊)

制备角度和时效处理对激光选区熔化18Ni300成型质量影响

张鹏林, 杨天雨, 尹燕, 刘文朝, 张瑞华

张鹏林, 杨天雨, 尹燕, 刘文朝, 张瑞华. 制备角度和时效处理对激光选区熔化18Ni300成型质量影响[J]. 焊接, 2018, (9): 31-36.
引用本文: 张鹏林, 杨天雨, 尹燕, 刘文朝, 张瑞华. 制备角度和时效处理对激光选区熔化18Ni300成型质量影响[J]. 焊接, 2018, (9): 31-36.
ZHANG Penglin, YANG Tianyu, YIN Yan, LIU Wenchao, ZHANG Ruihua. Effect of fabrication angle and ageing treatment on prototyping quality of 18Ni300[J]. WELDING & JOINING, 2018, (9): 31-36.
Citation: ZHANG Penglin, YANG Tianyu, YIN Yan, LIU Wenchao, ZHANG Ruihua. Effect of fabrication angle and ageing treatment on prototyping quality of 18Ni300[J]. WELDING & JOINING, 2018, (9): 31-36.

制备角度和时效处理对激光选区熔化18Ni300成型质量影响

基金项目: 

阳江市五金刀剪产业技术研究院新型机构初创期建设补助(611229498090)

广东省高端刀剪增材制造(3D打印)工程技术研究中心(509153168061).

详细信息
    作者简介:

    张鹏林,1996年出生,博士。主要从事无损检查新计算、无损评价等方面的研究。

  • 中图分类号: TG455

Effect of fabrication angle and ageing treatment on prototyping quality of 18Ni300

  • 摘要: 采用激光选区熔化技术制备18Ni300试样,通过SPSS(Statistical Product and Service Solutions)统计软件以及多种性能检测设备,着重研究激光选取熔化制备角度对尺寸、粗糙度以及致密度的影响关系。并对制备试样进行时效强化处理,研究时效强化对成型质量的影响。试验结果表明,无论采用什么制备角度,制备试样与原设计尺寸相比均出现缩小;在宽度方向上,随着制备角度的增加,尺寸呈上升趋势;厚度方向、尺寸呈下降趋势;粗糙度呈先增加后减小的趋势;而致密度呈现先减小后增大趋势。将试样进行时效强化热处理后,尺寸没有发生较大变化,而热处理后的粗糙度和致密度有明显的下降趋势。
    Abstract: Selective laser melting has been applied to fabricating 18Ni300. Using SPSS( Statistical Product and Service Solutions) and various testing equipment to study the dimensions,roughness and density of specimen with different fabrication angle. Meanwhile,ageing treatment was applied,and its influence on the quality and shape were analyzed. The result shows that the dimensions of specimen become smaller than the designed dimensions. The specimen becomes wider and thinner with the fabrication angle being larger. Roughness increases firstly and then decreases with the fabrication angle being larger. However,Density first decreases and then increases with the increase of the fabrication angle. Though ageing treatment cannot make any changes on the dimension of parts,it can result in the improvement on roughness but decrease of density.
  • [1] 董博伦, 柏久阳, 林三宝, 等. 激光/电弧增材制造金属的热处理工艺研究现状与发展[J]. 焊接, 2016(4): 17-22.
    [2] 潘龙威, 董红刚. 焊接增材制造研究新进展[J]. 焊接, 2016(4): 27-32.
    [3] 梁行, 姜云禄, 陈怀宁, 等. SUS301L不锈钢激光搭接焊工艺参数对焊缝形貌的影响[J]. 焊接, 2017(7): 23-28.
    [4]

    Yin Y, Pan C L, Zhang R H, et al. The effect of Ti addition on the microstructure and properties of high chromium iron-based coatings[J]. Journal of Alloys & Compounds, 2018, 765: 782-790.

    [5] 胡迪·利普森, 梅尔芭·库曼.3D打印:从想象到现实 [M]. 北京:中信出版社出版社, 2014: 01-98.
    [6] 赵曙明, 沈显峰, 杨家林, 等. 水雾化316L不锈钢选区激光熔化致密度与组织性能研究[J]. 应用激光, 2017(3): 319-326.
    [7]

    Kamath C, El-Dasher B, Gallegos G F, et al. Density of additively-manufactured, 316L SS parts using laser powder-bed fusion at powers up to 400 W[J]. International Journal of Advanced Manufacturing Technology, 2014, 74(1-4): 65-78.

    [8]

    Casati R, Lemke J, Vedani M. Microstructure and fracture behavior of 316L austenitic stainless steel produced by selective laser melting[J]. Journal of Materials Science & Technology, 2016, 32(8): 738-744.

    [9]

    Kempen K, Yasa E, Thijs L, et al. Microstructure and mechanical properties of Selective Laser Melted 18Ni-300 steel[J]. Physics Procedia, 2011, 12(1):255-263.

    [10]

    Jägle E A, Choi P P, Humbeeck J V, et al. Precipitation and austenite reversion behavior of a maraging steel produced by selective laser melting[J]. Journal of Materials Research, 2014, 29(17):2072-2079.

    [11]

    Zhou Y Y, Wang F, Xue C. Microstructure and mechanical properties of 3D printing 18Ni300 die steel[J]. Physical Testing & Chemical Analysis, 2016.

    [12]

    Demir A G, Previtali B. Investigation of remelting and preheating in SLM of 18Ni300 maraging steel as corrective and preventive measures for porosity reduction[J]. International Journal of Advanced Manufacturing Technology, 2017, 93(5-8):1-13.

    [13]

    Yao Y, Huang Y, Chen B, et al. Influence of processing parameters and heat treatment on the mechanical properties of 18Ni300 manufactured by laser based directed energy deposition[J]. Optics & Laser Technology, 2018, 105:171-179.

    [14]

    Bai Y, Yang Y, Wang D, et al. Influence mechanism of parameters process and mechanical properties evolution mechanism of maraging steel 300 by selective laser melting[J]. Materials Science & Engineering A, 2017, 703: 116-123.

    [15]

    Wang C, Hu B. Neural network prediction of endurance property for 18Ni300 steel based on genetic algorithm[J]. Tool Engineering, 2016, 50(4):61-64.

    [16]

    Kang N, Ma W, Li F, et al. Microstructure and wear properties of selective laser melted WC reinforced 18Ni-300 steel matrix composite[J]. Vacuum, 2018, 154:69-74.

    [17]

    Guan X, Guochen Y E. Determination of 18Ni300 powder composition of maraging steel by microwave degestion with ICP-AES[J]. China Measurement & Test, 2018, 44(3): 53-56.

    [18] 杨永强, 卢建斌, 王迪, 等. 316L不锈钢选区激光熔化成型非水平悬垂面研究[J]. 材料科学与工艺, 2011, 19(6): 94-99.
    [19] 吴根丽. 金属悬垂特征结构件激光选区熔化成形工艺研究[D]. 南京:南京理工大学硕士学位论文, 2016.
    [20] 吴伟辉, 肖冬明, 杨永强, 等. 激光选区熔化成型过程的粉末粘附问题分析[J]. 热加工工艺, 2016(24):43-47.
    [21] 孙大庆. 金属粉末选区激光熔化试验研究[D]. 北京:北京工业大学硕士学位论文, 2007.
    [22] 周鑫. 激光选区熔化微尺度熔池特性与凝固微观组织[D].北京: 清华大学博士学位论文, 2016.
  • 期刊类型引用(5)

    1. 余海松,余闪闪,李婷,尹彦平,吕晓刚. 18Ni不锈钢电阻点焊接头力学性能有限元仿真. 焊接. 2023(05): 24-28 . 本站查看
    2. 唐光东,冯涛,段国庆,冯云龙,郭东海,吴朋越. 18Ni300模具钢逆铺粉方向不同倾斜角激光选区熔化成形工艺研究. 电加工与模具. 2020(S1): 63-67 . 百度学术
    3. 陈帅,陶凤和,贾长治. 选区激光熔化成型18Ni300钢显微组织与性能研究. 铸造技术. 2019(07): 657-661 . 百度学术
    4. 张璐,巩建强,杜文强,张兴兴,李志勇. 经SLM打印成型的18Ni300热处理研究. 应用激光. 2019(04): 660-665 . 百度学术
    5. 唐思熠,房立家,孙兵兵,张学军. 激光选区熔化Ti6Al4V的工艺参数优化与显微组织. 焊接. 2019(10): 1-6+65 . 本站查看

    其他类型引用(1)

计量
  • 文章访问数:  226
  • HTML全文浏览量:  0
  • PDF下载量:  14
  • 被引次数: 6
出版历程
  • 收稿日期:  2018-05-14

目录

    /

    返回文章
    返回