Xu Oi, Tang Xinhua, Liu Guoqiang, Qian Weifang, Wu Wei. Influence of arc-swing on backing bead formation of narrow-gap GMAW in horizontal position[J]. WELDING & JOINING, 2020, (1): 13-20. DOI: 10.12073/i.hj.20191106001
Citation: Xu Oi, Tang Xinhua, Liu Guoqiang, Qian Weifang, Wu Wei. Influence of arc-swing on backing bead formation of narrow-gap GMAW in horizontal position[J]. WELDING & JOINING, 2020, (1): 13-20. DOI: 10.12073/i.hj.20191106001

Influence of arc-swing on backing bead formation of narrow-gap GMAW in horizontal position

More Information
  • Received Date: November 05, 2019
  • A new type of swing arc narrow-gap gas metal arc welding torch was used to conduct the narrow-gap horizontal welding test on FH40 thick plates. The relationship between process parameters and backing bead formation, droplet transfer and defects were studied. The results showed that the are swing amplitude influences greatly on the weld width and the surface formation, and the welding speed has the greatest impact on the weld penetration and the asymmetry of the weld. The molten pool could not widely expand in welding without arc-swing, and the weld bead becomes narrow and convex to result in lack-of-sidewall penetration in the weld. In welding with swing arc, the droplet transfer form and the molten pool flow state could be changed. An appropriate swing amplitude was helpful for the molten pool to fill the groove evenly and to obtain a well-formed symmetrical weld with satisfied sidewall penetration. An excessive large amplitude of arc swing would accelerate the sagging of molten pool, even to cause welding defects such as undercut and weld bead convexity.
  • [1]
    鲍亮亮, 王勇, 韩涛, 等. 海洋平台焊接技术及发展趋势[J]. 焊接, 2019(1): 21-30.
    [2]
    李海新, 张琳琳, 张婧, 等. 厚板奥氏体不锈钢焊接技术研究现状[J]. 焊接, 2017(6): 35-38.
    [3]
    徐山. 盾构机中厚板的自动化焊接 [J]. 焊接, 2018(11): 57-5968.
    [4]
    王猛. 大型汽轮机转子窄间隙 TIG 横焊工艺研究[D].哈尔滨:机械科学研究总院硕士学位论文,2015.
    [5]
    王储, 胡昕明, 高强, 等. 真空复合连铸板坏叠轧厚钢板工艺[J]. 金属热处理, 2013, 38(9): 46-48.
    [6]
    Li Q, Feng J, Zhang Z. Quality control of narrow gap automatic welding for nuclear island primary pipes in nuclear power plant [J]. Electric Power Construction, 2012, 33 (9):109-112.
    [7]
    方倩. 大厚度 DH40 钢焊接工艺研究[D]. 江苏;江苏科技大学硕士学位论文,2011.
    [8]
    李双, 徐望辉, 李锋, 等. 30 mm 厚钦合金 TCA 磁控电弧窄间琼 TIG 焊接接头组织及力学性能研究[J]. 焊接, 2018(1): 41-45.
    [9]
    Malin V Y. State-of-the-art of narrow gap welding[J]. Welding Journal, 1983, 62(4): 43 -48.
    [10]
    任志鵬, 蒋朝东, 唐新华, 等. 新型摆动电张窄间琼 GMAW 焊缝成形研究[J]. 淿接, 2013(4): 26-29.
    [11]
    高延峰, 吴东, 黄林然. 局部干法环境下 GMAW 横向焊接嫆滴过渡特性[J]. 焊接学报, 2019, 40(9): 82 86.
    [12]
    徐望辉, 林三宝, 杨春利, 等. 濹动电弧窄间隌 GMAW综滴过渡规律[J]. 焊接学报, 2017, 38 (2): 109 114.
    [13]
    王硕. 撰动电张窄间隌 P-GMAW 熔滴过渡及电弧行为研究[D]. 天津:天津工业大学硕士学位论文,2019.
    [14]
    Xu G, Wang J, Li P, et al. Numerical analysis of heat transfer and fluid flow in swing are narrow gap GMA welding [J]. Journal of Materials Processing Technology, 2018, 252:260-269.
    [15]
    梅詮繁. 窄间噇高速旋转电弧焊接工艺的研究[D]. 上海:上海交通大学硕士学位论文,2010.
    [16]
    Cui H C, Jiang Z D, Tang X H, et al. Research on narrowgap GMAW with swing are system in horizontal position[J]. The International Joumal of Advanced Manufacturing Technology, 2014, 74(1 -4): 297-305.
    [17]
    朱展挠. 厚壁铝合金窄间琼 GMAW 焊缝成形与缺陷形成机理研究 [D]. 上海:上海交通大学博士学位论文, 2018.
  • Related Articles

    [1]Liu Jinde, Dong Manshu, Peng Chuntao, Chen Bing. Weld bead formation, microstructure and properties of middle trough component by swing arc narrow gap GMAW with different backings[J]. WELDING & JOINING, 2024, (9): 37-42. DOI: 10.12073/j.hj.20221101003
    [2]Sun Xian. Characterization of droplet transfer modes in CW-GMAW based on engineering application[J]. WELDING & JOINING, 2024, (2): 63-73. DOI: 10.12073/j.hj.20230427002
    [3]Luo Yu, Ji Tianliang, Gao Mengmeng, Wang Dongyao. Welding process and properties of X65 pipeline steel by narrow groove rotating arc welding[J]. WELDING & JOINING, 2023, (7): 26-33. DOI: 10.12073/j.hj.20220921005
    [4]Sun Xian. Engineering application oriented droplet transfer mode of buried arc GMAW[J]. WELDING & JOINING, 2022, (2). DOI: 10.12073/j.hj.20121017001
    [5]Sun Xian. Characterization of metal transfer modes of GMAW based on metallurgical reaction[J]. WELDING & JOINING, 2021, (4): 35-44. DOI: 10.12073/j.hj.20201205001
    [6]HUANG Zepai, LI Huijun, WANG Ruichao, WANG Hao. Numerical simulation of droplet transition in ultrasonic-MIG welding[J]. WELDING & JOINING, 2021, (2): 29-33. DOI: 10.12073/j.hj.20201029001
    [8]CHEN Shujun, CENG Yangbo, XIAO Jun, BAI Lilai, JIA Yazhou. Excitation of droplet oscillation in CO2 shielded welding based on arc force regulating[J]. WELDING & JOINING, 2018, (8): 1-5.
    [9]Zhu Xiaoxiang, Liu Jia, Bai Lilai. Study on piezoelectric actuator based GMAW welding decoupling control method and its mechanism[J]. WELDING & JOINING, 2017, (6): 26-29.
    [10]Chen Shujun, Song Yaxiu, Xiao Jun, Bai Lilai, Wang Xuping. Droplet transfer behavior in Pulsed Plasma-MIG welding[J]. WELDING & JOINING, 2017, (3): 12-16.

Catalog

    Article views (25) PDF downloads (2) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return