ZHONG Run, GUO Shaoqing, ZHANG Wenyang, LI Bohong, ZHAO Zijun, HUANG Shuai. Numerical simulation of thermal-mechanical development of GH4169 alloy in laser additive manufacturing process[J]. WELDING & JOINING, 2021, (3): 13-21. DOI: 10.12073/j.hj.20201112001
Citation: ZHONG Run, GUO Shaoqing, ZHANG Wenyang, LI Bohong, ZHAO Zijun, HUANG Shuai. Numerical simulation of thermal-mechanical development of GH4169 alloy in laser additive manufacturing process[J]. WELDING & JOINING, 2021, (3): 13-21. DOI: 10.12073/j.hj.20201112001

Numerical simulation of thermal-mechanical development of GH4169 alloy in laser additive manufacturing process

More Information
  • Received Date: November 11, 2020
  • In order to solve the problem of deformation and even cracking in the laser additive manufacturing process of GH4169 alloy, a direct coupled thermo-elastoplastic finite element method was used to simulate and analyze the temperature and stress evolution during the laser additive manufacturing process of GH4169 alloy single-layer multilayer wall. The results showed that the deposition specimen underwent rapid heating and cooling during the laser additive process, and the temperature change rate exceeded 1×10~5℃/s. The peak temperature of the thermal cycle exceeded 2 500 ℃, and the highest temperature reached 2 876 ℃.The area scanned by laser deposition was constrained by the cooling shrinkage, which resulted in high stress. The temperature of the area scanned by the laser during the subsequent deposition increased again,which would first release the stress formed by the previous deposition, then would cause greater stress as the temperature decreased. At the moment when the deposition was over, the temperature of the part abnormally increased where the deposited layer was connected to the substrate.The residual stress of the deposition layer was dominated by tensile stress, up to 875 MPa. The stress component along the deposition direction was the largest. The residual stress of the substrate near the junction with the deposited layer reached about 800 MPa, and the residual compressive stress was distributed in the distance.
  • [1]
    《中国航空材料手册》编辑委员会.中国航空材料手册(第2版):第2卷[M].北京:中国标准出版社, 2001.
    [2]
    Sun Qingqing, Sang Haibo, Liu Yibo, et al. Cross section scan trace planning based on arc additive manufacturing [J]. China Welding, 2019, 28(4): 16-21.
    [3]
    王华明.高性能大型金属构件激光增材制造:若干材料基础问题[J].航空学报, 2014, 35(10):2690-2698.
    [4]
    Francois M M, Sun A, King W E, et al. Modeling of additive manufacturing processes for metals: Challenges and opportunities[J]. Current Opinion in Solid State and Materials Science, 2017, 21:1-9.
    [5]
    杜泽林, 张文明.电弧增材制造中铝合金的应力与变形的模拟[J].内燃机与配件, 2020(3):110-113.
    [6]
    龚丞, 王丽芳, 朱刚贤, 等.激光增材制造工艺参数对熔覆层残余应力的影响[J].激光技术, 2019, 43(2):263-268.
    [7]
    赵宇辉, 赵吉宾, 王志国, 等.Inconel 625镍基高温合金激光增材制造内应力控制方式研究[J].真空, 2020, 57(3):73-79.
    [8]
    张义福, 张华, 朱政强, 等.沉积路径对激光增材制造结构件残余应力的影响[J].上海交通大学学报, 2019, 53(12):1488-1494.
    [9]
    葛芃, 张昭, 张少颜, 等.圆环构件增材制造残余应力模拟及尺寸效应分析[J].塑性工程学报, 2019, 26(5):249-255.
    [10]
    龚丞, 王丽芳, 朱刚贤, 等.激光增材制造316L不锈钢熔覆层残余应力的数值模拟研究[J].应用激光, 2018, 38(3):402-408.
    [11]
    Gouge M, Michaleris P.Thermo-mechanical modeling of additive manufacturing(1st edition)[M]. Oxford, United Kingdom: Elsevier-Butterworth-Heinemann, 2017.
    [12]
    郭绍庆, 周标, 李能, 等.GH783/GH4169环件异种金属焊接热-力过程的有限元分析[J].焊接, 2011(12):22-26.
    [13]
    任朝晖, 刘振, 周世华, 等.钛合金激光熔丝增材制造的温度场与应力场模拟[J].东北大学学报(自然科学版), 2020, 41(4):551-556.
  • Related Articles

    [1]Yang Hao, Chen Ruibo, Yang Lei, Lü Hongying, Wang Hui, Yu Zhongting. Finite element simulation of induction heating based on cemented carbide/steel heterogeneous brazing[J]. WELDING & JOINING, 2024, (9): 23-28. DOI: 10.12073/j.hj.20221205003
    [2]Wang Lü, Li Hongjun, Liao Xiaoping. Simulation on welding process of bow half pipe jacket[J]. WELDING & JOINING, 2023, (10): 31-37, 54. DOI: 10.12073/j.hj.20220323001
    [3]Dong Junqiang, Chen Kexuan, Chen Peng. Numerical simulation of plasma-MIG hybrid welding based on different plasma currents[J]. WELDING & JOINING, 2023, (5): 1-6. DOI: 10.12073/j.hj.20220131001
    [4]Ji Wei, Zhang Peng, Jiang Hong. Analysis of welding temperature field of T-joint of the girder with[J]. WELDING & JOINING, 2022, (6). DOI: 10.12073/j.hj.20220128003
    [5]Chen Chonglong, Zhou Jihui, Li Kan, Fang Chao, Gu Guochao, Jia Chuanbao. Investigation on rotating arc narrow groove GTAW process of 321 stainless steel for nuclear plants[J]. WELDING & JOINING, 2022, (4). DOI: 10.12073/j.hj.20211201002
    [6]XIAO Yu, CHEN Xi, HU Jiannan, ZHANG Haiou. Online detection of defects in arc additive manufacturing based on infrared temperature field[J]. WELDING & JOINING, 2020, (7): 42-46,54. DOI: 10.12073/j.hj.20200220003
    [7]ZHANG Hongen, LI Baozeng, QIAO Huijie, ZHANG Yaodong, PANG Yajuan. Numerical simulation of flange welding of GIS aluminum alloy shell[J]. WELDING & JOINING, 2018, (10): 48-52.
    [8]Geng Libo, Yang Yatao, Fu Hongya. Research on laser welding technology of explosion-proof valves based on simulation of temperature field[J]. WELDING & JOINING, 2017, (9): 18-21.
    [9]Zheng Shida, Krivtsun Igor, Han Shanguo, Cai Detao. Numerical simulation of flow field and temperature field in reverse polarity plasma cutting[J]. WELDING & JOINING, 2017, (6): 30-34.
    [10]Li Jianlong, Zhong Ensong. Temperature field calculation and test for laser welding of aluminium alloys[J]. WELDING & JOINING, 2017, (5): 51-53.
  • Cited by

    Periodical cited type(13)

    1. 付宇明,李长城,闫茂荣,郑立娟. TC4表面镍基涂层的微观组织及高温抗变形性能. 华南理工大学学报(自然科学版). 2025(01): 108-117 .
    2. 谢伟峰,周禹阳,年科宇,黄特,李雨,丁彦. 摆动参数对铝合金电弧增材制造薄壁成形形貌及尺寸的影响. 焊接. 2024(02): 9-17+25 . 本站查看
    3. 赵昀,梁乐,孙宏伟,陈卫彬,张本顺. 层间冷却对电弧增材制造钛合金构件性能的影响. 焊接. 2024(02): 26-30 . 本站查看
    4. 张旭,万金初,朱亮,吉明亮,杨宗辉. Inconel 617镍基合金电弧增材制造微观组织与力学性能. 焊接. 2024(02): 31-35 . 本站查看
    5. 周莹超,赵海生,房立家,刘欢,刘明明. 基于Simufact Additive对GH4169旋流机匣激光选区熔化成形过程工艺仿真研究. 现代机械. 2024(04): 1-6 .
    6. 李晨阳,许燕,周建平,李静. 焊接工艺参数对仰焊MAG堆焊成形的影响. 焊接. 2023(03): 32-38 . 本站查看
    7. 刘正武,赵凯,齐超琪,杜洋,封小松. 搅拌摩擦增材制造技术研究现状与发展趋势. 机械制造文摘(焊接分册). 2023(01): 13-20 .
    8. 骆传万,冯杰才,沈裕航,刘树磊,姜梦,魏连峰. 窄间隙激光焊研究现状及发展趋势. 机械制造文摘(焊接分册). 2023(02): 10-18 .
    9. 于信伟,张宇,赵爱婷. 35CrMnSi表面激光熔覆残余应力场数值分析. 煤炭技术. 2023(09): 223-226 .
    10. 周标,王浩,任新宇,邱嘉玉,潘晖. 采用BNi-5钎料钎焊K417G高温合金的界面组织和力学性能. 焊接. 2023(12): 12-16 . 本站查看
    11. 赵国栋,王昊,赵建平. GH4169激光选区熔化成形残余应力数值模拟研究. 电焊机. 2022(07): 7-17 .
    12. 徐富家,杨义成,雷振,黄瑞生,李荣,张彦东. 激光同轴送粉增材制造粉末束流关键特征表征与分析. 焊接学报. 2022(08): 68-72+117-118 .
    13. 刘正武,赵凯,齐超琪,杜洋,封小松. 搅拌摩擦增材制造技术研究现状与发展趋势. 焊接. 2022(11): 1-8 . 本站查看

    Other cited types(6)

Catalog

    Article views (41) PDF downloads (16) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return