Dong Xianchun, Liu Xinyao, Zhang Dawei, Xiao Baoliang, Cai Ning. Cracking analysis and process improvement of pulse preheating flash butt welded joint of dual phase wheel steel[J]. WELDING & JOINING, 2021, (5): 41-46. DOI: 10.12073/j.hj.20210222001
Citation: Dong Xianchun, Liu Xinyao, Zhang Dawei, Xiao Baoliang, Cai Ning. Cracking analysis and process improvement of pulse preheating flash butt welded joint of dual phase wheel steel[J]. WELDING & JOINING, 2021, (5): 41-46. DOI: 10.12073/j.hj.20210222001

Cracking analysis and process improvement of pulse preheating flash butt welded joint of dual phase wheel steel

More Information
  • Received Date: February 21, 2021
  • Pulse preheating flash butt welding technology was used to weld dual phase wheel steel SRS590 LW. After butt welding,wheel rim was manufactured by scraping slag,cutting end,expanding,3 steps rolling forming and expanding finishing. In the process of expanding and expanding finishing,weld cracking occurred and the cracking rate was 20%. Analysis of metallographic microstructure,microstructure,precipitates and hardness distribution was carried out on cracked samples of wheel rim welded joint. The results showed that microstructure of the base metal was ferrite + bainite and the grain size was 3 ~ 10 μm. Size of precipitates was 10 ~ 100 nm. The cracking weld was overheated,its grain size became abnormally coarse to 60 ~ 120 μm. Proeutectoid ferrite appeared and precipitates below 20 nm disappeared. The maximum hardness of weld was 338 HV. The fracture was brittle fracture,and the fracture source was shear burr. When the length of the sample was increased 10 mm,the total extension length was reduced 5 mm,the preheating allowance was reduced 2 mm,times of pulse preheating decreased from 19 to 12,welding voltage was reduced from 8 V to 7.6 V,the welding time was shortened from 10 s to 8 s,the electric upsetting time was reduced from 0.8 s to 0.6 s. Then the overheated microstructure in the weld center was eliminated,microstructure in the weld center was mainly acicular ferrite and the grain size was 60 ~ 80 μm. The maximum hardness of the welded joints was reduced to 216 HV and cracking rate of the wheel rim was reduced to less than 2%.
  • [1]
    李光瀛, 周积智. 新一代高强塑性钢的开发与应用[J]. 轧钢, 2011, 28(1): 1-10.
    [2]
    马鸣图, Shi M F. 先进的高强度钢及其在汽车工业中的应用[J]. 钢铁, 2004, 39(7): 68-72.
    [3]
    张大伟, 杜林秀, 肖宝亮, 等. 乘用车轮辐用 600 MPa 级热轧双相钢失效原因分析[J]. 金属热处理, 2018, 43(7): 224-228.
    [4]
    高杰, 王娟, 李亚江, 等. 脉冲闪光对焊技术在高强环链生产中的应用[J]. 焊接, 2019(8): 32-36.
    [5]
    赵红利, 李发云, 罗成, 等. 汽车滚型轮辋闪光对焊开裂报废分析[J]. 焊接技术, 2009, 38(3):56-58.
    [6]
    Bhattacharyya S, Adhikary M, Das M B, et al. Failure analysis of cracking in wheel rims-material and manufacturing aspects[J]. Engineering Failure Analysis, 2008, 15: 547-554.
    [7]
    徐志欣. 590 MPa级高强钢轮辋接头组织性能与失效分析[D]. 厦门: 华侨大学硕士学位论文, 2017.
    [8]
    郗晨瑶. RS590CL 钢闪光对焊接头微观组织及力学性能的研究[D]. 吉林: 吉林大学硕士学位论文, 2016.
    [9]
    张楠, 田志凌, 张书彦, 等. Q700D热影响粗晶区疲劳寿命与小裂纹扩展分析[J]. 钢铁研究学报, 2019, 31(8): 741-747.
    [10]
    张楠, 董现春, 潘辉, 等. 高Ti-Nb系高强钢焊接接头回火前后的力学行为[J]. 焊接学报, 2015, 36(5): 93-98.
    [11]
    董现春, 张楠, 陈延清, 等. 800 MPa级钛铌析出强化高强钢焊接接头的组织与力学性能[J]. 机械工程材料, 2014, 38(11): 21-25.
    [12]
    张楠, 董现春, 徐晓宁, 等. Ti-Nb微合金化高强钢的焊接接头组织和性能[J]. 材料热处理学报, 2014, 35(6): 115-120.
    [13]
    董现春, 张楠, 陈延清, 等. 高Ti, Nb析出强化高强钢接头强度及焊接热影响区软化行为分析[J]. 焊接学报, 2012, 33(11): 72-76.
    [14]
    张楠, 董现春, 张熹, 等. 钛微合金化SQ700MCD高强钢粗晶热影响区软化的原因[J]. 机械工程材料, 2012, 36(4): 88-92.
    [15]
    张楠, 田志凌, 张书彦, 等. 700 MPa微合金高强钢焊接软化机理及解决方案[J]. 钢铁研究学报, 2019, 31(3): 318-326.
    [16]
    付魁军, 高铭泽, 冷雪松, 等. TiNb钢焊接热影响区微观组织与冲击性能演变规律[J]. 焊接学报, 2019, 40(5): 36-41.
    [17]
    缪成亮, 刘振伟, 郭晖, 等. Nb含量和热输入量对X80管线钢焊接粗晶区的影响[J]. 材料热处理学报, 2012, 33(1): 99-105.
    [18]
    张楠, 田志凌, 张书彦, 等. 微Ti处理380CL车轮钢闪光对焊工艺与组织调控[J]. 焊接学报, 2020, 41(1): 72-79.
  • Related Articles

    [1]LYU Xueqin, WANG Peiyinquan, XU Yuzhe, WU Tao, ZHANG Yu. Path planning of welding seam inspection robot based on improved extended random tree algorithm[J]. WELDING & JOINING, 2025, (3): 14-19, 29. DOI: 10.12073/j.hj.20240726002
    [2]Wang Lingxu, Sun Bo, Chen Min, Nie Yuliang, Chen Le, Wang Weijun, Liang Yu. Flash butt welding of weathering steel for transmission tower[J]. WELDING & JOINING, 2024, (1): 53-59. DOI: 10.12073/j.hj.20220705001
    [3]Zhang Junwei, Fu Xiaobin, Zhang Tingting, Wang Tao, Huang Qingxue. Microstructure and performance of butt weld of Q235B+304 thin-lined composite pipe[J]. WELDING & JOINING, 2023, (9): 30-39. DOI: 10.12073/j.hj.20220324003
    [4]Lü Xueqin, Long Liyuan, He Xianghuan, Xie Chengzhi, Lian Jie, Zhang Min, Fang Jian. Robot weld type recognition based on improved grey wolf algorithm optimizing SVM[J]. WELDING & JOINING, 2023, (8): 14-21, 36. DOI: 10.12073/j.hj.20220507001
    [5]Liu Lei, Wu Ruizhi, Mu Junfei, Wang Huan, Xi Meng. Improvement of gas-electric transverse welding process technology[J]. WELDING & JOINING, 2022, (8). DOI: 10.12073/j.hj.20220114002
    [6]Li Yunfu, Fang Wunong, Li Zhenhua. Insights on heat treatment to improve mechanical properties of welded joints[J]. WELDING & JOINING, 2021, (7): 48-52. DOI: 10.12073/j.hj.20210326002
    [7]LU Xin, LI Dadong, WANG Ruoyu, DENG Jian. Influence of welding process on performance of rail flash butt welded joint[J]. WELDING & JOINING, 2019, (12): 50-55. DOI: 10.12073/j.hj.20190513003
    [8]WANG Hongduo, SHI Chenggang, SUN Xinggang, LIU Yanming, TAN Wenfeng. Coiled tubing all-position automatic TIG welding process and its microstructures properties of welded joint[J]. WELDING & JOINING, 2019, (6): 44-48. DOI: 10.12073/j.hj.20181026003
    [9]XU Wanghui, FANG Weiping, YU Chen, ZHANG Yupeng, CHEN Miaoqing. Process and microstructures of twin-strip submerge arc bead welding of stainless steel[J]. WELDING & JOINING, 2018, (12): 42-47.
    [10]Chen Anzhong, Wang Junwei, Li Yufeng. TIG welding process of 2205 duplex stainless steel plate[J]. WELDING & JOINING, 2017, (9): 64-67.
  • Cited by

    Periodical cited type(13)

    1. 付宇明,李长城,闫茂荣,郑立娟. TC4表面镍基涂层的微观组织及高温抗变形性能. 华南理工大学学报(自然科学版). 2025(01): 108-117 .
    2. 谢伟峰,周禹阳,年科宇,黄特,李雨,丁彦. 摆动参数对铝合金电弧增材制造薄壁成形形貌及尺寸的影响. 焊接. 2024(02): 9-17+25 . 本站查看
    3. 赵昀,梁乐,孙宏伟,陈卫彬,张本顺. 层间冷却对电弧增材制造钛合金构件性能的影响. 焊接. 2024(02): 26-30 . 本站查看
    4. 张旭,万金初,朱亮,吉明亮,杨宗辉. Inconel 617镍基合金电弧增材制造微观组织与力学性能. 焊接. 2024(02): 31-35 . 本站查看
    5. 周莹超,赵海生,房立家,刘欢,刘明明. 基于Simufact Additive对GH4169旋流机匣激光选区熔化成形过程工艺仿真研究. 现代机械. 2024(04): 1-6 .
    6. 李晨阳,许燕,周建平,李静. 焊接工艺参数对仰焊MAG堆焊成形的影响. 焊接. 2023(03): 32-38 . 本站查看
    7. 刘正武,赵凯,齐超琪,杜洋,封小松. 搅拌摩擦增材制造技术研究现状与发展趋势. 机械制造文摘(焊接分册). 2023(01): 13-20 .
    8. 骆传万,冯杰才,沈裕航,刘树磊,姜梦,魏连峰. 窄间隙激光焊研究现状及发展趋势. 机械制造文摘(焊接分册). 2023(02): 10-18 .
    9. 于信伟,张宇,赵爱婷. 35CrMnSi表面激光熔覆残余应力场数值分析. 煤炭技术. 2023(09): 223-226 .
    10. 周标,王浩,任新宇,邱嘉玉,潘晖. 采用BNi-5钎料钎焊K417G高温合金的界面组织和力学性能. 焊接. 2023(12): 12-16 . 本站查看
    11. 赵国栋,王昊,赵建平. GH4169激光选区熔化成形残余应力数值模拟研究. 电焊机. 2022(07): 7-17 .
    12. 徐富家,杨义成,雷振,黄瑞生,李荣,张彦东. 激光同轴送粉增材制造粉末束流关键特征表征与分析. 焊接学报. 2022(08): 68-72+117-118 .
    13. 刘正武,赵凯,齐超琪,杜洋,封小松. 搅拌摩擦增材制造技术研究现状与发展趋势. 焊接. 2022(11): 1-8 . 本站查看

    Other cited types(6)

Catalog

    Article views (30) PDF downloads (8) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return