Wang Shusen, Zou Demin, Xiao Hongjun, et al. Microstructure and mechanical properties of weld joints in laser-MAG hybrid welding of 390 MPa grade marine high-strength steel[J]. Welding & Joining, 2024(4):58 − 62. DOI: 10.12073/j.hj.20221013001
Citation: Wang Shusen, Zou Demin, Xiao Hongjun, et al. Microstructure and mechanical properties of weld joints in laser-MAG hybrid welding of 390 MPa grade marine high-strength steel[J]. Welding & Joining, 2024(4):58 − 62. DOI: 10.12073/j.hj.20221013001

Microstructure and mechanical properties of weld joints in laser-MAG hybrid welding of 390 MPa grade marine high-strength steel

More Information
  • Received Date: October 12, 2022
  • Available Online: April 15, 2024
  • Issue Publish Date: April 24, 2024
  • Laser-MAG hybrid welding was carried out in 390 MPa grade marine high-strength steel. Cross-sectional morphologies and microstructures of the weld joints were investigated by stereo microscope and optical microscope, and the hardness and mechanical properties of the welds were analyzed in this study. The results indicate that the weld metal microstructures mainly consist of pre-eutectoid ferrite, side-plate ferrite, acicular ferrite and lath bainite at the welding speed of 0.8 m/min. As the welding speed is 1.2 m/min, the amount of pre-eutectoid ferrite and side-plate ferrite decreases, whereas that of the acicular ferrite and lath bainite increases. The hardness of the weld joints is higher than those of the base metal, showing no obvious soften zone. Laser-MAG hybrid welds exhibits sound low-temperature impact toughness, and the impact absorbed energy of the weld metal at −40 ℃ and −60 ℃ increases with an increase in the welding speed.

  • [1]
    Steen W M. Arc augmented laser processing of materials[J]. Journal of Applied Physics, 1980, 51(11): 5636 − 5641. doi: 10.1063/1.327560
    [2]
    雷振, 徐良, 徐富家, 等. 激光−电弧复合焊接技术国内研究现状及典型应用[J]. 焊接, 2018(12): 1 − 6.
    [3]
    赵琳, 塚本进, 荒金吾郎, 等. 激光−电弧复合焊焊缝合金元素分布的研究[J]. 中国激光, 2015, 42(4): 210 − 217.
    [4]
    Lee C M, Woo W S, Baek J T, et al. Laser and arc manufacturing processes: A review[J]. International Journal of Precision Engineering and Manufacturing, 2016, 17(7): 973 − 985. doi: 10.1007/s12541-016-0119-4
    [5]
    Acherjee B. Hybrid laser arc welding: State-of-art review[J]. Optics & Laser Technology, 2018, 99: 60 − 71.
    [6]
    Nobuguki A, Yasushi K. Dynamic observation of speed laser-arc combination welding of thick steel[J]. Section G-ICALEO(1), 1997: 155 − 163.
    [7]
    Oilthey U, Wieschemann A. Prospects by combing and coupling laser beam and arc welding process[J]. IIW Doc, X11-1565-99, 1999.
    [8]
    肖荣诗, 吴世凯. 激光−电弧复合焊接的研究进展[J]. 中国激光, 2008(11): 1680 − 1685. doi: 10.3321/j.issn:0258-7025.2008.11.004
    [9]
    杨国兵. 我国造船业模块化制造网络研究[D]. 哈尔滨: 哈尔滨工程大学, 2008.
    [10]
    王明林, 吴艳明, 张成杰, 等. 10CrNi3MoV钢激光−MAG 复合热源焊接技术研究[J]. 材料开发与应用, 2013(1): 1 − 5.
    [11]
    杜义, 吴艳明, 李京龙. 10CrNi3MoV钢激光−MAG复合焊接头组织与力学性能[J]. 热加工工艺, 2013, 42(5): 169 − 171.
    [12]
    Zhang S, Sun J, Zhu M, et al. Effects of shielding gases on process stability of 10CrNi3MoV steel in hybrid laser-arc welding[J]. Journal of Materials Processing Technology, 2019, 270: 37 − 46. doi: 10.1016/j.jmatprotec.2019.01.027
    [13]
    Zhang S, Wang Y, Zhu M, et al. Effects of heat source arrangements on laser-MAG hybrid welding characteristics and defect formation mechanism of 10CrNi3MoV steel[J]. Journal of Manufacturing Processes, 2020, 58: 563 − 573. doi: 10.1016/j.jmapro.2020.08.027
    [14]
    李旭晨. 船用高强钢激光−电弧复合焊接工艺与接头性能研究[D]. 天津: 河北工业大学, 2020.
    [15]
    Yin F, Li X, Chen C, et al. Microstructure and mechanical properties of weld metal in laser and gas metal arc hybrid welding of 440-MPa-grade high-strength steel[J]. Journal of Iron and Steel Research International, 2021, 28(7): 853 − 861. doi: 10.1007/s42243-020-00503-z
    [16]
    邹德敏, 齐锦刚, 赵琳, 等. 焊接速度对激光−电弧复合焊接焊缝成形和低温冲击韧性的影响[J]. 中国激光, 2022, 49(8): 151 − 160.

Catalog

    Article views (70) PDF downloads (45) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return