Citation: | Wang Guofu, Jiao Shuaijie, Chen Bo, et al. Research progress on impact toughness of supermartensitic stainless steel[J]. Welding & Joining, 2024(5):51 − 57. DOI: 10.12073/j.hj.20231109002 |
Supermartensitic stainless steel has been widely used in many industrial fields for its excellent comprehensive properties. However, with the development of some modern engineering structures in the direction of large-scale, service conditions are more severe for supermartensitic stainless steel, which increases requirements for impact toughness of its components. In this paper, research progress of impact toughness of supermartensitic stainless steel was focused on, aiming to provide reference for optimization of toughness of base metal and welded structures. Firstly, effects of microalloying elements such as N, Nb, Ti, Cu and V on toughness of base metal was introduced. Addition of N, Nb, Ti, V could form precipitates such as nitrides and carbides in microstructure, which damaged impact properties of the material. Addition of appropriate Cu element did not form precipitates that was harmful to toughness, but toughness of the material was improved because it promoted formation of toughening phase reversed austenite. Secondly, toughness level of supermartensitic stainless steel weld under different welding processes was summarized from two perspectives of welding method and shielding gas. Impact toughness of welded joints of turbine runner with the existing MAG welding process was lower than that of base metal, which restricted further development of hydropower industry. Finally, it was pointed out that in-depth study of microalloying technology and optimization of welding process and heat treatment process were important directions to promote application of supermartensitic stainless steel.
[1] |
Liu Zhihong, Gao Zhiming, Lv Chuantao, et al. Research on the correlation between impact toughness and corrosion performance of Cr13 super martensitic stainless steel under deferent tempering condition[J]. Materials Letters, 2021, 283: 128791. doi: 10.1016/j.matlet.2020.128791
|
[2] |
Bojack A, Zhao L, Morris P F, et al. Austenite formation from martensite in a 13Cr6Ni2Mo supermartensitic stainless steel[J]. Metallurgical and Materials Transactions A, 2016, 47(5): 1996 − 2009. doi: 10.1007/s11661-016-3404-z
|
[3] |
Santos L L, Cardoso R P, Brunatto S F. Behavior of the reversed austenite in CA-6NM martensitic stainless steel under cavitation[J]. Wear, 2020, 454-455: 203322. doi: 10.1016/j.wear.2020.203322
|
[4] |
姜雯. 超级马氏体不锈钢组织性能及逆变奥氏体机制的研究[D]. 昆明: 昆明理工大学, 2014.
|
[5] |
Bojack A, Zhao L, Morris P F, et al. In situ thermo-magnetic investigation of the austenitic phase during tempering of a 13Cr6Ni2Mo supermartensitic stainless steel[J]. Metallurgical and Materials Transactions A, 2014, 45(13): 5956 − 5967. doi: 10.1007/s11661-014-2551-3
|
[6] |
张义伟. 00Cr13Ni6Mo2超级马氏体不锈钢组织演变与相变行为研究[D]. 安徽 马鞍山: 安徽工业大学, 2020.
|
[7] |
马小平. 0Cr(13~16)Ni(4, 5)Mo(1, 2)系超级马氏体不锈钢微合金化理论与技术研究[D]. 沈阳: 东北大学, 2011.
|
[8] |
Wu Shipin, Wang Dongpo, Zhao Chen, et al. Enhanced toughness of Fe-12Cr-5.5Ni-Mo-deposited metals through formation of fine reversed austenite[J]. Journal of Materials Science, 2018, 53(22): 15679 − 15693. doi: 10.1007/s10853-018-2718-1
|
[9] |
张盛华, 王培, 李殿中, 等. ZG06Cr13Ni4Mo马氏体不锈钢中TRIP效应的同步辐射高能X射线原位研究[J]. 金属学报, 2015, 51(11): 1306 − 1314.
|
[10] |
Muthusamy C, Karuppiah L, Paulraj S, et al. Effect of heat input on mechanical and metallurgical properties of gas tungsten arc welded lean super martensitic stainless steel[J]. Materials Research, 2016, 19(3): 572 − 579. doi: 10.1590/1980-5373-MR-2015-0538
|
[11] |
Olivio É F T, Olivio-Filho P S, Aguiar L A, et al. Analysis of 410NiMo coating deposited by thermal spray in CA6NM martensitic stainless steel against erosion by cavitation[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104(9-12): 4559 − 4569. doi: 10.1007/s00170-019-04277-x
|
[12] |
Nakamichi H, Sato K, Miyata Y, et al. Quantitative analysis of Cr-depleted zone morphology in low carbon martensitic stainless steel using FE-(S)TEM[J]. Corrosion Science, 2008, 50(2): 309 − 315. doi: 10.1016/j.corsci.2007.08.004
|
[13] |
Bala-Srinivasan P, Sharkawy S W, Dietzel W. Hydrogen assisted stress-cracking behaviour of electron beam welded supermartensitic stainless steel weldments[J]. Materials Science and Engineering A, 2004, 385(1): 6 − 12.
|
[14] |
Tavares S S M, Almeida B B, Corrêa D A L, et al. Failure of super 13Cr stainless steel due to excessive hardness in the welded joint[J]. Engineering Failure Analysis, 2018, 91: 92 − 98. doi: 10.1016/j.engfailanal.2018.04.018
|
[15] |
Thibault D, Bocher P, Thomas M. Residual stress and microstructure in welds of 13%Cr-4%Ni martensitic stainless steel[J]. Journal of Materials Processing Technology, 2009, 209(4): 2195 − 2202. doi: 10.1016/j.jmatprotec.2008.05.005
|
[16] |
Thibault D, Bocher P, Thomas M, et al. Residual stress characterization in low transformation temperature 13%Cr-4%Ni stainless steel weld by neutron diffraction and the contour method[J]. Materials Science and Engineering A, 2010, 527(23): 6205 − 6210. doi: 10.1016/j.msea.2010.06.035
|
[17] |
Ma X P, Wang L J, Subramanian S V, et al. Studies on Nb microalloying of 13Cr super martensitic stainless steel[J]. Metallurgical and Materials Transactions A, 2012, 43(12): 4475 − 4486. doi: 10.1007/s11661-012-1268-4
|
[18] |
De Oliveira M P, Calderón-Hernández J W, Magnabosco R, et al. Effect of Niobium on phase transformations, mechanical properties and corrosion of supermartensitic stainless steel[J]. Journal of Materials Engineering and Performance, 2017, 26(4): 1664 − 1672. doi: 10.1007/s11665-017-2610-1
|
[19] |
Ma Xiaoping, Zhou Cheng, Wang Lijun, et al. Role of Nb in 13Cr super-martensitic stainless steel[J]. Revista Escola de Minas, 2013, 66(2): 179 − 185. doi: 10.1590/S0370-44672013000200007
|
[20] |
姜召华. Nb微合金化超低碳马氏体不锈钢00Cr13Ni5Mo2的组织性能研究[D]. 沈阳: 东北大学, 2011.
|
[21] |
Wang Lijun, Cai Qingwu, Wu Huibin, et al. Effects of Si on the stability of retained austenite and temper embrittlement of ultrahigh strength steels[J]. International Journal of Minerals, Metallurgy and Materials, 2011, 18(5): 543. doi: 10.1007/s12613-011-0475-0
|
[22] |
张宝丽. N含量对0Cr16Ni5Mo马氏体不锈钢组织和性能的影响[D]. 长沙: 湖南大学, 2017.
|
[23] |
Ma X P, Wang L J, Qin B, et al. Effect of N on microstructure and mechanical properties of 16Cr5Ni1Mo martensitic stainless steel[J]. Materials and Design, 2012, 34: 74 − 81. doi: 10.1016/j.matdes.2011.07.064
|
[24] |
马小平, 王立军, 王园园, 等. 氮对马氏体不锈钢00Cr13Ni4Mo组织和性能的影响[J]. 材料热处理学报, 2012, 33(4): 77 − 85.
|
[25] |
王淑霞, 贾伟, 王毓麟. 氮对0Cr13Ni4Mo马氏体不锈钢机械性能的影响[J]. 特殊钢, 2001, 22(5): 23 − 25. doi: 10.3969/j.issn.1003-8620.2001.05.008
|
[26] |
Lian Yong, Huang Jinfeng, Zhang Jin, et al. Effect of 0.2 and 0.5% Ti on the microstructure and mechanical properties of 13Cr supermartensitic stainless steel[J]. Journal of Materials Engineering and Performance, 2015, 24(11): 4253 − 4259. doi: 10.1007/s11665-015-1749-x
|
[27] |
Tavares S S M, Pardal J M, Souza G C, et al. Influence of tempering on microstructure and mechanical properties of Ti alloyed 13%Cr supermartensitic stainless steel[J]. Materials Science and Technology, 2014, 30(12): 1470 − 1476. doi: 10.1179/1743284713Y.0000000448
|
[28] |
Ye Dong, Li Jun, Jiang Wen, et al. Effect of Cu addition on microstructure and mechanical properties of 15%Cr super martensitic stainless steel[J]. Materials and Design, 2012, 41, 16.
|
[29] |
Ye Dong, Yu Lihua, Jiang Wen, et al. Synergistic effect of Cu and Ni on the formation of reversed austenite in super martensitic stainless steel[J]. Ironmaking & Steelmaking, 2020, 47(4): 381 − 387.
|
[30] |
吕香, 邹德宁, 庞阳, 等. V对超级马氏体不锈钢组织及力学性能的影响[J]. 材料热处理学报, 2020, 41(6): 106 − 110.
|
[31] |
杨东, 范翔宇, 黄艳宁, 等. V、C、N含量对02Cr13Ni4Mo钢组织和力学性能的影响[J]. 热加工工艺, 2021, 50(4): 115 − 120.
|
[32] |
Sarafan S, Wanjara P, Champliaud H, et al. Characteristics of an autogenous single pass electron beam weld in thick gage CA6NM steel[J]. International Journal of Advanced Manufacturing Technology, 2015, 78(9-12): 1523 − 1535. doi: 10.1007/s00170-014-6713-7
|
[33] |
Sarafan S, Wanjara P, Gholipour J, et al. Mechanical properties of electron beam welds in heavy-section UNS S41500 martensitic stainless steel[J]. International Journal of Advanced Manufacturing Technology, 2017, 91(9-12): 4141 − 4150. doi: 10.1007/s00170-017-0099-2
|
[34] |
Song Y Y, Ping D H, Yin F X, et al. Microstructural evolution and low temperature impact toughness of a Fe-13%Cr-4%Ni-Mo martensitic stainless steel[J]. Materials Science and Engineering A, 2010, 527(3): 614 − 618. doi: 10.1016/j.msea.2009.08.022
|
[35] |
杨晶晶. 水轮机用0Cr13Ni5Mo不锈钢焊接工艺研究[D]. 成都: 西南交通大学, 2018.
|
[36] |
Thibault D, Gagnon M, Godin S. The effect of materials properties on the reliability of hydraulic turbine runners[J]. International Journal of Fluid Machinery and Systems, 2015, 8(4): 254 − 263. doi: 10.5293/IJFMS.2015.8.4.254
|
[37] |
Sarafan S, Wanjara P, Gholipour J, et al. Mehanical properties of electron beam welded joints in thick gage CA6NM stainless steel[J]. Journal of Materials Engineering and Performance, 2017, 26(10): 4768 − 4780. doi: 10.1007/s11665-017-2872-7
|
[38] |
Sarafan S, Wanjara P, Lévesque J B, et al. Through-thickness residual stresses, microstructure, and mechanical properties of electron beam-welded CA6NM martensitic stainless steel after postweld heat treatment[J]. Advances in Materials Science and Engineering, 2020, 2020: 7194214.
|
[39] |
Mirakhorli F, Cao X, Pham X T, et al. Hybrid laser-arc welding of 10-mm-thick cast martensitic stainless steel CA6NM: as-welded microstructure and mechanical properties[J]. Metallurgical and Materials Transactions A, 2016, 47(7): 3545 − 3563. doi: 10.1007/s11661-016-3523-6
|
[40] |
杜兵, 孙凤莲, 徐玉君, 等. 焊接方法对超低碳马氏体不锈钢焊丝熔敷金属冲击韧性的影响[J]. 焊接学报, 2014, 35(8): 1 − 4.
|
[41] |
秦名朋, 李冬杰, 陆善平. He与He+CO2双层气流保护TIG焊工艺[J]. 焊接学报, 2011, 32(11): 49 − 52.
|
[42] |
徐玉君, 王伟波, 杜兵, 等. 气体含量对马氏体不锈钢熔敷金属冲击性能的影响[J]. 焊接, 2007(9): 34 − 36. doi: 10.3969/j.issn.1001-1382.2007.09.010
|
[43] |
焦帅杰, 王国佛, 贾玉力, 等. 超级马氏体不锈钢焊丝MAG焊熔敷金属冲击性能优化[J]. 焊接学报, 2022, 43(3): 93 − 100.
|
[44] |
于航, 侴树国, 王慧源, 等. 氧对00Cr13Ni5Mo熔敷金属组织和韧性的影响[J]. 焊接学报, 2014, 35(6): 109 − 112.
|