Li Yunyue, Li Xiupeng, Shen Yuanxun, et al. Microstructure of vacuum brazed 6063 aluminum alloy honeycomb plate[J]. Welding & Joining, 2023(12):6 − 11, 16. DOI: 10.12073/j.hj.20220728001
Citation: Li Yunyue, Li Xiupeng, Shen Yuanxun, et al. Microstructure of vacuum brazed 6063 aluminum alloy honeycomb plate[J]. Welding & Joining, 2023(12):6 − 11, 16. DOI: 10.12073/j.hj.20220728001

Microstructure of vacuum brazed 6063 aluminum alloy honeycomb plate

More Information
  • Received Date: July 27, 2022
  • Available Online: December 10, 2023
  • Issue Publish Date: December 10, 2023
  • 4004 brazing filler metal was used to vacuum braze 6063 aluminum alloy honeycomb plates, effect of different honeycomb core thickness on microstructure of brazed joints was investigated. The results showed that when brazing temperature was 585 ℃ and holding time was 20 min, honeycomb core with thickness of 0.1 mm could not be brazed. Three kinds of honeycomb core with different thickness had melting erosion phenomenon. When monolayer honeycomb core thickness was 0.10 mm and 0.15 mm, there was white Al-Si eutectic phase in the reaction zone of brazing interface, and its morphology was block when monolayer honeycomb core thickness was 0.10 mm and dendritic when monolayer honeycomb core thickness was 0.15 mm. When monolayer honeycomb core thickness was 0.21 mm, white Al-Si eutectic phase disappeared and only Si element enriched phase existed. When bilayer honeycomb core thickness was 0.10 mm, the brazed interface collapsed. When bilayer honeycomb core thickness was 0.15 mm, interface reaction zone (Si-rich intermetallic compound phase) was larger, but core material was not dissolved, and part of influence zone (α-Al solid solution phase) was also formed between interface reaction zone and core material. Influence zone between panel and interface reaction zone was also smaller than that of 0.10 mm bilayer honeycomb core thickness. When bilayer honeycomb core thickness reached 0.21 mm, influence zone between panel and interface reaction zone increased, core material also was not dissolved, and core material interface reaction zone became smaller. In other words, brittle Si-rich intermetallic compounds in bilayer honeycomb core decreased, and α-Al solid solution phase increased.

  • [1]
    马鸣图, 易红亮, 路洪洲, 等. 论汽车轻量化[J]. 中国工程科学, 2009, 11(9): 20 – 27. doi: 10.3969/j.issn.1009-1742.2009.09.004
    [2]
    宫建锋, 李俐群, 孟圣昊. 圆形摆动激光对5A06铝合金激光焊接熔池流动行为的影响分析[J]. 焊接学报, 2022, 43(11): 50 – 55, 83. doi: 10.12073/j.hjxb.20220707002
    [3]
    Wang Wei, Li Peng, Meng Xiangchen, et al. High-strength friction stir welding of selective laser melted AlSi10Mg alloys [J]. China Welding, 2022, 31(4): 23 – 27.
    [4]
    Jin Yuhua, Chen Yongsheng, Ma Yueming, et al. Fatigue crack propagation of 7050 aluminum alloy FSW joints after surface peening [J]. China Welding, 2023, 32(1): 18 – 26.
    [5]
    毕红艳, 段友社, 谢凯文. 共固化成型蜂窝夹层结构缺陷分析及工艺改进[J]. 航空制造技术, 2014(15): 106 – 109.
    [6]
    张雨, 王玉国, 龚俊杰. 列车门覆板−铝蜂窝脱粘缺陷的红外热像检测[J]. 激光与红外, 2013, 43(2): 176 – 179.
    [7]
    李云月, 沈元勋, 李秀朋, 等. 真空钎焊3003铝合金蜂窝板界面组织与性能[J]. 焊接, 2021(7): 23 – 28.
    [8]
    雷煜, 郭宝东, 张文健, 等. 钎焊铝蜂窝材料在城轨车辆中的应用[C]//北京: 2017京津冀综合交通技术创新协同发展学术研讨会, 2017: 132 − 135.
    [9]
    石丸靖男, 张耀宏, 张芳. 高速铁道车辆用钎焊铝蜂窝板及其加工[J]. 国外机车车辆工艺, 2001(2): 11 – 17.
    [10]
    高魁源. 日立制作所开发的新型车体结构[J]. 国外铁道车辆, 1994(4): 10 – 16.
    [11]
    山口进吾, 蔡千华. 蜂窝状焊接构件的设计制造[J]. 国外机车车辆工艺, 1994(5): 11 – 17.
    [12]
    程方杰, 齐书梅, 赵欢, 等. 铝蜂窝板的自反应钎焊工艺与性能[J]. 中国有色金属学报, 2016, 26(9): 1843 – 1849. doi: 10.19476/j.ysxb.1004.0609.2016.09.003
    [13]
    李东田. 钎焊铝蜂窝板的研制与力学性能研究[D]. 昆明: 昆明理工大学硕士学位论文, 2005.
    [14]
    刘灿威, 李龙, 周德敬. 热交换器用铝合金在钎焊过程中的熔蚀现象[J]. 轻合金加工技术, 2017, 45(4): 47 – 55. doi: 10.13979/j.1007-7235.2017.04.009
  • Related Articles

    [1]LIANG Yiming, ZHAO Mingyuan, SHENG Lanbing, SHEN Yuanxun, ZHONG Sujuan. Research status of brazing interface and erosion control of titanium alloy[J]. WELDING & JOINING, 2025, (4): 66-77. DOI: 10.12073/j.hj.20240716001
    [2]Liu Deyun, Dong Tingbin, Peng Fei, Li Yunyue, Zhao Mingyuan, Shen Yuanxun. Microstructure and mechanical properties of DT4 electrical pure iron and QCr0.5 chromium bronze vacuum welded-brazed joints[J]. WELDING & JOINING, 2024, (11): 33-38. DOI: 10.12073/j.hj.20231118001
    [3]Tang Wei. Effect of element content of AgCuMnNi brazing filler metal on microstructure and properties of brazed joints[J]. WELDING & JOINING, 2023, (12): 38-44. DOI: 10.12073/j.hj.20230725003
    [4]Jin Ying, Liu Hongliang, Wei Xin, Min Huina, Wang Dan, Tai Qingan, Zheng Lei. Microstructure and mechanical properties of brazed joints of GH4738/GH3536 dissimilar superalloys[J]. WELDING & JOINING, 2023, (10): 18-22, 30. DOI: 10.12073/j.hj.20220521001
    [5]Li Yunyue, Shen Yuanxun, Li Xiupeng, Pei Yinyin, Wang Luyi, Long Weimin. Interfacial microstructure and mechanical properties of vacuum brazed 3003 aluminum alloy honeycomb panel[J]. WELDING & JOINING, 2021, (7): 23-28. DOI: 10.12073/j.hj.20210324002
    [6]WEI Song, ZHANG Yaxiao, ZHOU Xiaolei, CENG Ruchuan, SONG Wei. Microstructure and mechanical properties of copper and stainless steel joint by vacuum brazing[J]. WELDING & JOINING, 2020, (3): 54-57. DOI: 10.12073/j.hj.20190807003
    [7]HOU Bin, LIU Fengmei, LI Qi. Study on microstructure and properties of indirectly brazed joint of Al2O3 ceramic/AlSiMg/1A95 aluminum alloy[J]. WELDING & JOINING, 2019, (5): 37-43. DOI: 10.12073/j.hj.20181115002
    [8]SONG Yuanceng, LIU Lijun, QI Chaoqi, LI Yaping, GAO Zhuanni. Microstructure of laser melt injected WC/TC4 MMC on titanium alloy of aircraft flap track[J]. WELDING & JOINING, 2018, (11): 44-49.
    [9]Lin Zhifeng, Chen Zhikai, Xing Bin, Li Xuefei, Deng Lifen. Effect of brazing temperature on microstructure and properties of GH4169 / 1Cr18Ni9Ti joints[J]. WELDING & JOINING, 2017, (8): 25-28.
    [10]Zhang Xianhui, Jia Jun. Microstructure and mechanical properties of deposited metal made by BHG-5 filler wire[J]. WELDING & JOINING, 2017, (5): 7-9.
  • Cited by

    Periodical cited type(2)

    1. 雷奕文,贺文勃,张骞文,李细锋. 钛合金蜂窝芯瓦楞板精密成形技术研究进展. 航空制造技术. 2025(06): 58-68 .
    2. 宋昕怡,朱宏涛,秦建,路全彬,常云峰,方乃文,廖志谦. 基于有限元分析的感应钎焊蜂窝板工艺研究. 电焊机. 2024(10): 86-92 .

    Other cited types(0)

Catalog

    Article views (135) PDF downloads (53) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return