Citation: | TAN Chenyu, ZHOU Xiangman, LUO Bin, et al. Effect of pulse frequency on the morphology, microstructure and properties of deposited layer in arc additive manufacturing of 6061 aluminum alloy[J]. Welding & Joining, 2025(4):43 − 49. DOI: 10.12073/j.hj.20240723005 |
[Objective] The aim is to provide a reference for the selection of process parameters of 6061 aluminum alloy arc additive manufacturing. [Methods] A tungsten inert gas (TIG) arc additive manufacturing platform is constructed. The research focuses on the impact of different pulse frequencies mode on morphology, microstructure and mechanical properties of 6061 aluminum alloy deposited layers. [Results] The result of research shows that with the increase of pulse frequency, the fish-scale pattern of the single-layer weld gradually becomes denser, the fusion width of the single-layer weld shows a change rule of decreasing first and then increasing, the fusion height shows a change rule of increasing first and then decreasing. The average grain size of the single-layer multi-track deposition sample decreases and then increases within a certain range, its elongation after fracture continues to increase, the tensile strength and yield strength show a trend of increasing first and then decreasing. [Conclusion] When the peak current is 170 A and the pulse frequency is 2.5 Hz, the mechanical properties of the samples reach their optimal levels. The tensile strength reaches 166.6 MPa, the yield strength is 129.2 MPa and the average hardness is 61.3 HV.
[1] |
HAO Y, LEHUA Q , JUN L, et al. Effect of the surface morphology of solidified droplet on remelting between neighboring aluminum droplets[J]. International Journal of Machine Tools and Manufacture, 2018, 130: 1 − 11.
|
[2] |
蒋旗, 张培磊, 刘志强, 等. 冷金属过渡加脉冲电弧增材制造4043铝合金薄壁件的组织与拉伸性能[J]. 机械工程材料, 2020, 44(1): 57 − 61.
JIANG Qi, ZHANG Peilei, LIU Zhiqiang, et al. Microstructure and tensile properties of arc additive manufacturing 4043 aluminum alloy thin-walled parts by CMT with addition of pulse[J]. Materials For Mechanical Engineering, 2020, 44(1): 57 − 61.
|
[3] |
OUYANG J H, Wang H, KOVACEVIC R. Rapid prototyping of 5356-aluminum alloy based on variable polarity gas tungsten arc welding: process control and microstructure[J]. Materials and Manufacturing Processes, 2017, 17(1): 103 − 124.
|
[4] |
赵鹏康, 唐成, 蒲尊严, 等. TIG电弧增材制造5356铝合金微观组织与拉伸性能[J]. 焊接学报, 2020, 41(5): 65 − 70.
ZHAO Kangpeng, TANG Cheng, PU Zhunyan, et al. Microstructure and tensile properties of 5356 aluminum alloy by TIG wire arc additive manufacturing[J]. Transactions of the China Welding Institution, 2020, 41(5): 65 − 70.
|
[5] |
王轲, 张元彬. ER5356铝合金双脉冲电弧增材制造成形工艺及组织研究[J]. 热加工工艺, 2021, 50(9): 20 − 23.
WANG Ke, ZHANG Yuanbin. Study on double pulse arc additive manufacturing process and microstructure of ER5356 aluminum alloy[J]. Hot Working Technology, 2021, 50(9): 20 − 23
|
[6] |
何磊. Al-Mg 铝合金双脉冲电弧増材增材制造技术及工艺研究[D]. 南京: 南京理工大学, 2017.
HE Lei. Research on the fabrication process and characteristics of Al-Mg aluminum alloy by wire and double-pulsed arc additive manufacturing[D]. Nanjing, China: Nanjing University of Science & Technology, 2017.
|
[7] |
谢伟峰, 周禹阳, 年科宇, 等. 摆动参数对铝合金电弧增材制造薄壁成形形貌及尺寸的影响[J]. 焊接, 2024(2): 9 − 17.
XIE Weifeng, ZHOU Yuyang, NIAN Keyu, et al. Effect of weaving parameters on morphology and size of thin-walled aluminum alloy formed by wire and arc additive manufacturing[J]. Welding & Joining, 2024(2): 9 − 17.
|
[8] |
DO-QUANG M, AMBERG G. Modelling of time-dependent 3D weld pool due to a moving arc[M]. Berlin, Germany: Simulation and Optimization of Complex Processes, 2005.
|
[9] |
石玗, 郭朝博, 黄健康, 等. 脉冲电流作用下TIG电弧的数值分析[J]. 物理学报, 2011, 60(4): 731 − 737.
SHI Yu, GUO Chaobo, HUANG Jiankang, et al. Numerical simulation of pulsed current tungesten inert gas (TIG) welding arc[J]. Acta Physica Sinica, 2011, 60(4): 731 − 737.
|
[10] |
QI B, YANG M , CONG B , et al. The effect of arc behavior on weld geometry by high-frequency pulse GTAW process with 0Cr18Ni9Ti stainless steel[J]. International Journal of Advanced Manufacturing Technology, 2013, 66(9): 1545 − 1553.
|
[11] |
WANG D, LU J, TANG S, et al. Reducing porosity and refining grains for arc additive manufacturing aluminum alloy by adjusting arc pulse frequency and current[J]. Materials, 2018, 11(8): 1344.
|
[12] |
武传松, 郑炜, 吴林. 脉冲电流作用下TIG焊接熔池行为的数值模拟[J]. 金属学报, 1998, 34(4): 416 − 422.
WU Chuansong, ZHENG Wei, WU Lin. Numerical simulation of TIG weld pool behavior under the action of pulsed current[J]. Acta Metallurgica Sinica, 1998, 34(4): 416 − 422.
|
[13] |
POURKIA N, EMAMY M, FARHANGI H, et al. The effect of Ti and Zr elements and cooling rate on the microstructure and tensile properties of a new developed super high-strength aluminum alloy. Materials Science and Engineering: A, 2010, 527(20): 5318 – 5325.
|
[14] |
从保强, 齐铂金, 周兴国, 等. 复合脉冲方波电流频率对5A06铝合金焊缝组织和性能的影响[J]. 焊接学报, 2010, 31(1): 89 − 92.
CONG Baoqiang, QI Bojin, ZHOU Xingguo, et al. Effect of hybrid-pulse square-wave current frequency on microstructure and mechanical properties of 5A06 aluminum alloy welds[J]. Transactions of the China Welding Institution, 2010, 31(1): 89 − 92.
|
[15] |
KISHORE B, GANESH S, MYTHILI R, et al. Correlation of microstructure with mechanical properties of TIG weldments of Ti-6Al-4V made with and without current pulsing[J]. Materials Characterization, 2007, 58(7): 581 − 587. doi: 10.1016/j.matchar.2006.07.001
|
[16] |
ZUO Y, CUI J, ZHAO Z, et al. Effect of low frequency electromagnetic field on casting crack during DC casting superhigh strength aluminum alloy ingots[J]. Materials Science and Engineering: A, 2005, 406(1-2): 286 − 292. doi: 10.1016/j.msea.2005.07.001
|
[17] |
王涛, 郑振太, 董天顺, 等. 脉冲 TIG 焊接工艺参数对 Inconel601H 镍基合金焊缝晶粒大小的影响[J]. 焊接学报, 2015, 36(4): 109 − 112.
WANG Tao, ZHENG Zhentai, DONG Tianshun, et al. Effect of welding parameters on grain size in Inconel601H nickel-based alloy weld by P-TIG welding[J]. Transactions of the China Welding Institution, 2015, 36(4): 109 − 112.
|
[18] |
周方明, 钱乙余, 张景, 等. 钽薄壁管 GTA 焊接接头晶粒细化机理[J]. 焊接学报, 2006, 27(6): 41 − 44.
ZHOU Fangming, QIAN Yiyu, ZHANG Jing, et al. Grain refinement mechanism of gas tungsten arc welded joint of tantalum thin walled tube[J]. Transactions of the China Welding Institution, 2006, 27(6): 41 − 44.
|