Mechanical properties and failure analysis of ZTC4 laser cladding repair
-
摘要: 采用同轴送粉式激光熔覆技术对ZTC4板材的圆孔形缺陷进行修复,通过采用封边搭接和旋转搭接的方式研究了不同工艺、不同扫描路径及不同热处理工艺下激光熔覆修复对ZTC4修复件力学性能的影响。结果表明,封边搭接和旋转搭接的修复质量及修复效率相近,能在保证修复效率的情况下保证一定的修复质量。光斑直径相较于修复层数是更主要影响修复质量的工艺参数。对深3 mm和5 mm孔进行封边搭接及旋转修复时,发现采用φ2.5 mm光斑直径的封边搭接工艺所获得的力学性能优于光斑直径φ1.0 mm封边搭接和旋转修复工艺。光斑直径φ2.5 mm封边搭接拉伸结果呈韧性断裂;光斑直径φ1.0 mm封边搭接拉伸结果呈准解理断裂。同时,修复试样的综合力学性能在经过固溶处理和固溶时效处理前后变化不大。Abstract: The round hole defect of ZTC4 plate is repaired by coaxial powder feeding laser cladding technology. Laser cladding is studied under different processes,different scanning paths and different heat treatment processes by means of edge bonding and rotating overlap.The effect of repair on the mechanical properties of ZTC4 repair parts. The results show that the repair quality and repair efficiency of the edge-sealing and rotating overlap are similar,and a certain repair quality can be guaranteed while ensuring the repair efficiency. The spot diameter is a process parameter that is more important to the quality of the repair than the number of repair layers. When the deep 3 mm and 5 mm holes were edge-sealed and rotated,it was found that the mechanical properties obtained by the edge-bonding process withφ2. 5 mm spot diameter were better than the spot diameter φ1. 0 mm edge-sealing and rotation repair process. The spot diameter φ2. 5 mm lap joint tensile test results in ductile fracture; the spot diameter φ1. 0 mm edge lap joint tensile results are quasi-cleavage fracture.At the same time,the comprehensive mechanical properties of the repaired samples did not change much before and after solution treatment and solution treatment.
-
Keywords:
- titanium alloy /
- laser cladding /
- laser repair /
- mechanical properties /
- failure analysis
-
-
[1] 朱知寿. 我国航空用钛合金技术研究现状及发展[J]. 航空材料学报, 2014, 34(4): 44-50. [2] Sexton L, Lavin S, Byrne G, et al. Laser cladding of aerospace materials[J]. Journal of Materials Processing Technology, 2002, 122(1): 63-68.
[3] 钦兰云. 钛合金激光沉积修复关键技术研究[D].沈阳:沈阳工业大学博士学位论文, 2014. [4] Arcella F, Abbott D, House M. Titanium alloy structures for airframe application, by the laser forming process[J]. American Institute of Aeronautics and Astronautics, 2000, 1465:1-10.
[5] Graf B, Gumenyuk A, Rethmeier M. Laser metal deposition as repair technology for stainless steel and titanium alloys[J]. Physics Procedia, 2012(39): 376-381.
[6] Acharya R, Bansal R, Gambone J J, et al. A coupled thermal, fluid flow, and solidification model for the processing of single-crystal alloy CMSX-4 through scanning laser epitaxy for turbine engine hot-section component repair (part I) [J].Metallurgical and Materials Transactions B, 2014, 45(6): 2247-2261.
[7] Acharya R, Das S. Additive manufacturing of IN100 superalloy through scanning laser epitaxy for turbine engine hot-section component repair: process development, modeling, microstructural characterization, and process control[J]. Metallurgical and Materials Transactions A, 2015, 46(9): 3864-3875.
[8] Liu Q, Brandt M, Janardhana M, et al. Potential application and certification of laser cladding technology for repair of ageing aircraft components[C]. International Congress on Applications of Lasers & Electro-Optics (ICALEO), Orlando, Florida, USA.2011.
[9] Liu Q, Wang Y, Zheng H, et al. TC17 titanium alloy laser melting deposition repair process and properties[J]. Optics & Laser Technology, 2016, 82: 1-9.
[10] Ren Y M, Lin X, Fu X, et al. Microstructure and deformation behavior of Ti-6Al-4V alloy by high-power laser solid forming[J]. Acta Materialia, 2017, 132: 82-95.
[11] 何毅. 钛合金激光修复工艺研究[D]. 苏州:苏州大学硕士学位论文, 2011. [12] 刘贤德. 基于钛合金(TC4)材料的激光修复技术研究[D]. 锦州:辽宁工业大学硕士学位论文, 2016. [13] 章敏. 送粉式和送丝式的钛合金激光增材制造特性研究[D]. 哈尔滨:哈尔滨工业大学硕士学位论文, 2013. [14] Silva D, Partes K, Seefeld T, et al. Comparison of coaxial and off-axis nozzle configurations in one step process laser cladding on aluminum substrate[J]. Journal of Materials Processing Technology, 2012, 212(11): 2514-2519.
[15] 王刚, 张秉刚, 冯吉才, 等. 镍基高温合金叶片焊接修复技术的研究进展[J]. 焊接, 2008(1):20-23. [16] 陆斌锋, 芦凤桂, 唐新华, 等. 激光焊接工艺的现状与进展[J]. 焊接, 2008(4):53-57. [17] 张天刚, 孙荣禄. Ti811合金表面TC4激光熔覆层微观组织及性能[J]. 焊接学报, 2019, 40(4):41-45. [18] 李晓锡, 李志勇, 朱润东, 等. 熔覆材料与工艺参数对镁合金激光熔覆层缺陷的影响[J]. 焊接技术, 2014(11):5-8. -
期刊类型引用(6)
1. 范朝,程宗辉,张志强. 热输入对0Cr16Ni6合金激光熔覆修复层组织与性能的影响. 应用激光. 2023(06): 64-72 . 百度学术
2. 周鼎,姚迪,罗家成,唐鹏,孙磊. 激光修复技术研究进展综述及其在核电领域的应用前景分析. 电焊机. 2022(01): 77-88 . 百度学术
3. 冉兴,王哲,吕志刚,曹建,陈垚,杨朝荣,李培杰. 热处理工艺对ZTC4钛合金显微组织及性能的影响研究. 钢铁钒钛. 2022(01): 48-52 . 百度学术
4. 康澜,邬彬,陈志邦. 激光熔覆技术修复局部腐蚀钢板后修复件的力学性能. 华南理工大学学报(自然科学版). 2022(05): 137-146 . 百度学术
5. 鲁一荻,张骁勇,彭志刚. 合金元素对激光熔覆高熵合金涂层影响的研究进展. 焊接. 2021(10): 8-14+24+61 . 本站查看
6. 姚志超,李正秋,高向宙,马春春. 基于热力学计算的矿井支架用FeNiCrBC系激光熔覆层成分优化. 焊接. 2020(11): 11-16+36+61-62 . 本站查看
其他类型引用(4)
计量
- 文章访问数: 28
- HTML全文浏览量: 0
- PDF下载量: 19
- 被引次数: 10