• 中国科技核心期刊(中国科技论文统计源期刊)

核电异种金属焊接材料及方法研究现状

冯杰才, 刘树磊, 骆传万, 魏连峰, 姜梦, 田应仲

冯杰才, 刘树磊, 骆传万, 魏连峰, 姜梦, 田应仲. 核电异种金属焊接材料及方法研究现状[J]. 焊接, 2022, (3). DOI: 10.12073/j.hj.20211001001
引用本文: 冯杰才, 刘树磊, 骆传万, 魏连峰, 姜梦, 田应仲. 核电异种金属焊接材料及方法研究现状[J]. 焊接, 2022, (3). DOI: 10.12073/j.hj.20211001001
Feng Jiecai, Liu Shulei, Luo Chuanwan, We Lianfegn, Jiang Meng, Tian Yingzhong. Research status of welding materials and methods for dissimilar metals in nuclear power[J]. WELDING & JOINING, 2022, (3). DOI: 10.12073/j.hj.20211001001
Citation: Feng Jiecai, Liu Shulei, Luo Chuanwan, We Lianfegn, Jiang Meng, Tian Yingzhong. Research status of welding materials and methods for dissimilar metals in nuclear power[J]. WELDING & JOINING, 2022, (3). DOI: 10.12073/j.hj.20211001001

核电异种金属焊接材料及方法研究现状

Research status of welding materials and methods for dissimilar metals in nuclear power

  • 摘要: 异种金属焊接接头开裂是导致核电事故的主要原因,急需开发新材料新技术,提高焊缝质量。传统电弧焊方法存在效率低、热输入大和变形严重等问题。窄间隙电弧焊的热输入、填充量、变形量等都比传统电弧焊低。与窄间隙电弧焊相比,窄间隙激光填丝焊坡口更窄、热输入更低、变形更小、精度更高。研究表明,窄间隙激光填丝焊可获得满足核电压力容器制造要求的焊缝,有望成为异种金属连接新方法。然而,现有窄间隙激光填丝焊采用常规激光及单焊丝填充,仍存在3个主要问题:一是界面容易产生未熔合问题;二是熔融金属粘度大,熔池流动性差,合金元素分布不均匀;三是低熔点共晶相沿晶界析出过多,无法兼顾焊缝抗液化裂纹、应力腐蚀裂纹和高温失塑裂纹能力。研究表明,焊接热源和焊材是解决上述问题的2个关键因素。创新点:(1)系统论述了核电异种金属焊接材料的发展及其趋势。(2)窄间隙激光焊接有潜力成为核电异种金属连接的新方法。(3)焊接热源和焊材是解决窄间隙激光填丝焊界面未熔合、熔池流动性差低及低熔点共晶相沿晶界析出过多等问题的2个关键因素。
    Abstract: The cracking of welded joints of dissimilar metals is the main cause of nuclear power accidents.It is urgent to develop new materials and new process to improve the weld quality.Traditional arc welding has some problems, such as low efficiency, large heat input and serious deformation.Heat input, filling and deformation of narrow gap arc welding are lower than those of traditional arc welding.Compared with narrow gap arc welding, narrow gap laser welding with filling wire addition has narrower groove, lower heat input, smaller deformation and higher precision.The previous research indicated that narrow gap laser welding with filler wire addition could meet the requirements of the nuclear pressure vessel manufacture.It was expected to become a new method of the dissimilar metal welding.However, there were still three main problems existing in the available narrow gap laser welding with normal laser and filler single wire addition process.Firstly, the interface was easy to produce incomplete fusion.Secondly, the viscosity of molten metal was high and the fluidity of molten pool was poor resulting in the uneven distribution of alloy elements.Thirdly, the eutectic phase with low melting point precipitated too much along the grain boundary, which couldn’t take into account the ability of weld to resist liquefaction crack, stress corrosion crack and high-temperature plastic crack.The applicant believed that the welding heat source and filler materials were the two key factors to solve the above problems.Highlights:(1)The development and trend of welding materials for nuclear dissimilar metals were systematically discussed.(2)The narrow gap laser welding had the potential to become a new method of welding dissimilar metals in a nuclear power.(3)The welding heat source and welding materials were the two key factors to solve problems such as incomplete fusion of interface, poor fluidity of molten pooland eutectic phase with low melting point precipitated too much along the grain boundary in narrow gap laser welding with filler wire addition.
  • [1] McCracken S L, Smith R E.Behavior and hot cracking susceptibility of filler metal 52M(ERNiCrFe-7A)overlays on cast austenitic stainless steel base materials[M].B?llinghaus T, Lippold J, Cross C.Hot Cracking Phenomena in Welds III, Berlin Heidelberg, Springe, 2011.
    [2] Li X Q, Ding Z Y, Liu C, et al.Effects of temperature on the local fracture toughness behavior of Chinese SA508-III welded joint[J].Nuclear Engineering and Technology, 2020, 52(8): 1-10.
    [3] Ravikiran K, Das G, Kumar S, et al.Evaluation of microstructure at interfaces of welded joint between low alloy steel and stainless steel[J].Metallurgical and Materials Transactions A, 2019, 50(6): 2784-2797.
    [4] Li G, Lu X F, Zhu X L, et al.The defects and microstructure in the fusion zone of multipass laser welded joints with Inconel 52M filler wire for nuclear power plants[J].Optics & Laser Technology, 2017, 94: 97-105.
    [5] Li G, Lu X F, Zhu X L, et al.The segregation and liquation crackings in the HAZ of multipass laser-welded joints for nuclear power plants[J].Journal of Materials Engineering and Performance, 2017, 26(8): 4083-4091.
    [6] Ming H L, Zhang Z M, Wang J Q, et al.Microstructural characterization of an SA508-309L/308L-316L domestic dissimilar metal welded safe-end joint[J].Materials Characterization, 2014, 97: 101-115.
    [7] Wang Z H, Xu J, Shoji T, et al.Microstructure and pitting behavior of the dissimilar metal weld of 309L cladding and low alloy steel A533B[J].Journal of Nuclear Materials, 2018, 508: 1-11.
    [8] Xiong Q, Li H J, Lu Z P, et al.Characterization of microstructure of A508III/309L/308L weld and oxide films formed in deaerated high-temperature water[J].Journal of Nuclear Materials, 2018, 498: 227-240.
    [9] Alsaran A, Celik A.Mechanical and structural properties of similar and dissimilar steel joints[J].Materials Characterization, 1999, 43: 311-319.
    [10] Santosh R, Das G, Kumar S, et al.Experimental and computational investigation of structural integrity of dissimilar metal weld between ferritic and austenitic steel[J].Metallurgical and Materials Transactions A, 2018, 49(6): 2099-2112.
    [11] GhoshA, Sahu M, Singh P K, et al.Assessment of mechanical properties for dissimilar metal welds: a nondestructive approach[J].Journal of Materials Engineering and Performance, 2019, 28(2): 900-907.
    [12] Ranjbar K, Dehmolaei R, Amra M, et al.Microstructure and properties of a dissimilar weld between alloy 617 and A387 steel using different filler metals[J].Welding in the World, 2018, 62(6): 1121-1136.
    [13] Platt P, Sayers J, Horner D A, et al.Hydrogen-induced brittle fracture in nickel based alloy 82 weld metal[J].Corrosion Science, 2019, 153: 118-126.
    [14] Orr M R, Lippold J C, Argentine F.Evaluation of solidification cracking susceptibility in ERNiCr-3(Filler Metal 82)weld metal using the cast pin tear test[J].Welding in the World, 2017, 61(5): 935-944.
    [15] Oberson G, Audrain M, Collins J, et al.NRC perspectives on primary water stress corrosion cracking of high-chromium, nickel-based alloys[C]//Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, 2019: 55-65.
    [16] Ahonen M, Lindqvist S, Sarikka T, et al.Effect of thermal aging on fracture mechanical properties and crack propagation behavior of alloy 52 narrow-gap dissimilar metal weld[C]//Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, 2019: 1949-1963.
    [17] Hope A T, Lippold J C.Development and testing of a high-chromium, Ni-based filler metal resistant to ductility dip cracking and solidification cracking[J].Welding in the World, 2017, 61(2): 325-332.
    [18] Ahn H I, Jeong S H, Cho H H, et al.Ductility-dip cracking susceptibility of Inconel 690 using Nb content[J].Journal of Alloys and Compounds, 2019, 783: 263-271.
    [19] Wang H T, Wang G Z, Xuan F Z, et al.Local mechanical properties of a dissimilar metal welded joint in nuclear powersystems[J].Materials Science and Engineering: A, 2013, 568: 108-117.
    [20] Andresen P L, Morra M M, Ahluwalia K.SCC of alloy 152/52 welds defects, repairs and dilution zones in PWR water[C]//Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, 2019: 27-53.
    [21] Nastac L, Stefanescu D M.Computational modeling of NbC/Laves formation in Inconel 718 equiaxed castings[J].Metallurgical and Materials Transactions A, 1997, 28: 1582-1588.
    [22] Ji H B, Xia X W, Wu J F, et al.Welding technology development for the fabrication of vacuum vessel for CFETR[J].Fusion Engineering and Design, 2019, 147: 111272.
    [23] Li G, Lu X F, Zhu X L, et al.The interface microstructure, mechanical properties and corrosion resistance of dissimilar joints during multipass laser welding for nuclear power plants[J].Optics and Laser Technology, 2018, 101: 479-490.
    [24] Cheng B, Wu D J, Liu J, et al.Adjust dilution level to suppress the precipitated phase by dilution level model of dissimilar metal laser welding with filler wire[J].Optics and Laser Technology, 2020, 125: 106025.
    [25] Zuback J S, Palmer T A, DebRoy T.Additive manufacturing of functionally graded transition joints between ferritic and austenitic alloys[J].Journal of Alloys and Compounds, 2019, 770: 995-1003.
    [26] Jiang Z G, Chen X, Yu K, et al.Improving fusion zone microstructure inhomogeneity in dissimilar-metal welding by laser welding with oscillation[J].Materials Letters, 2020, 261: 126995.
    [27] Li J Z, Sun Q J, Liu Y B, et al.Melt flow and microstructural characteristics in beam oscillation superimposed laser welding of 304 stainless steel[J].Journal of Manufacturing Processes, 2020, 50: 629-637.
    [28] Zhang X, Mi G Y, Wang C M.Microstructure and performance of hybrid laser-arc welded high-strength low alloy steel and austenitic stainless steel dissimilar joint[J].Optics and Laser Technology, 2020, 122: 105878.
    [29] Li R Y, Wang T J, Wang C M, et al.A study of narrow gap laser welding for thick plates using the multi-layer and multi-pass method[J].Optics and Laser Technology, 2014, 64: 172-183.
    [30] Feng J C, Li L Q, Chen Y B, et al.Effects of welding velocity on the impact behavior of droplets in gas metal arc welding[J].Journal of Materials Processing Technology, 2012, 212(11): 2163-2172.
    [31] Chen Y B, Feng J C, Li L Q, et al.Effects of welding positions on droplet transfer in CO2 laser-MAG hybrid welding[J].The International Journal of Advanced Manufacturing Technology, 2013, 68(5-8): 1351-1359.
    [32] Cai C, Feng J C, Li L Q, et al.Influence of laser on the droplet behavior in short-circuiting, globular, and spray modes of hybrid fiber laser-MIG welding[J].Optics and Laser Technology, 2016, 83: 108-118.
    [33] Feng J C, Li L Q, Chen Y B, et al.Inhomogeneous microstructure and fatigue crack propagation of thick-section high strength steel joint welded using double-sided hybrid fiber laser-arc welding[J].Optics and Laser Technology, 2021, 134: 106668.
    [34] Gu H, V?ist? T, Li L.Numerical and experimental study on the molten pool dynamics and fusion zone formation in multi-pass narrow gap laser welding[J].Optics and Laser Technology, 2020, 126: 106081.
    [35] Onozuka M, Alfile J P, Aubert P, et al.Manufacturing and maintenance technologies developed for a thick-wall structure of the ITER vacuum vessel[J].Fusion Engineering and Design, 2001, 55(4): 397-410.
    [36] Sun Z.Feasibility of producing ferritic austenitic dissimilar metal joints by high energy density laser beam process[J].International Journal of Pressure Vessels and Piping, 1996, 68: 153-160.
    [37] Saravanan S, Raghukandan K, Sivagurumanikandan N.Studies on metallurgical and mechanical properties of laser welded dissimilar grade steels[J].Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39(9): 3491-3498.
    [38] Feng J C, Guo W, Francis J, et al.Narrow gap laser welding for potential nuclear pressure vessel manufacture[J].Journal of Laser Applications, 2016, 28(2): 022421.
    [39] Feng J C, Guo W, Irvine N, et al.Understanding and elimination of process defects in narrow gap multi-pass fiber laser welding of ferritic steel sheets of 30mm thickness[J].The International Journal of Advanced Manufacturing Technology, 2017, 88: 1821-1830.
    [40] Feng J C, Rathod D W, Roy M J, et al.An evaluation of multipass narrow gap laser welding as a candidate process for the manufacture of nuclear pressure vessels[J].International Journal of Pressure Vessels and Piping, 2017, 157: 43-50.
  • 期刊类型引用(10)

    1. 吴兵兵,同李悦,刘全印. 稳压器异种钢无隔离层的焊接工艺研究. 机械制造文摘(焊接分册). 2025(01): 14-19 . 百度学术
    2. 王艳松,刘福广,米紫昊,韩天鹏,张磊,杨二娟,巴特尔. 在役15Cr1Mo1V钢管道焊接接头显微组织与力学性能研究. 钢铁钒钛. 2024(02): 198-204 . 百度学术
    3. 张杰,徐建洲,谢宇航,张佳,黄健康. 铜/钛异种金属激光焊接头组织及力学性能. 焊接. 2024(07): 23-28+37 . 本站查看
    4. 张宏敏. 金属焊接材料在化工设备修复中的应用. 化工管理. 2024(22): 135-138 . 百度学术
    5. 周凡,顾介仁,王克鸿. 等离子弧增材交织结构的组织与力学性能. 焊接. 2023(01): 16-21 . 本站查看
    6. 沈顺喜. 高压储氢罐封头与接管的焊接工艺. 机械制造文摘(焊接分册). 2023(02): 40-43+48 . 百度学术
    7. 何子涛,黄本生,黄思语,刘罗林. 焊接温度对AZ91/TC4扩散焊接接头组织和性能的影响. 材料热处理学报. 2023(06): 191-198 . 百度学术
    8. 刘刚,杜爱国,王威琦,马连骥,张灵文. 10MnNi2MoV低合金钢管接头裂纹性质分析. 焊接. 2023(07): 59-64 . 本站查看
    9. 陈佩寅,郝乾宇,徐锴,郭枭. 基于微观组织的镍基合金焊接热裂纹判据. 焊接. 2023(10): 6-12 . 本站查看
    10. 何大明,黄祖来,周利,孙舒蕾. 核反应堆压力容器低合金钢与奥氏体不锈钢异种金属焊接研究现状. 电焊机. 2023(12): 7-21 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  57
  • HTML全文浏览量:  18
  • PDF下载量:  14
  • 被引次数: 12
出版历程
  • 收稿日期:  2021-09-30
  • 修回日期:  2021-12-07
  • 发布日期:  2022-03-24

目录

    /

    返回文章
    返回