核电321不锈钢旋转电弧窄间隙GTAW工艺
Investigation on rotating arc narrow groove GTAW process of 321 stainless steel for nuclear plants
-
摘要: 采用旋转电弧窄间隙钨极氩弧焊(NG-GTAW)新工艺对核电321不锈钢进行窄间隙焊接试验,根据工业生产实际对321不锈钢的施焊要求,将热输入严格控制在10 kJ/cm以下,并得到侧壁熔合良好、无明显缺陷的焊接接头。对旋转电弧NG-GTAW工艺过程温度场和应力场分布展开研究,发现在填充焊过程中,近焊缝区域最高温度可达600 ℃,此时奥氏体不锈钢处在敏化温度区间,在此温度长时间停留可能导致不锈钢耐蚀性能下降。在垂直于焊缝方向,近焊缝区域呈现拉应力,应力值略高于材料的屈服强度,随着与焊缝距离的增加,应力值逐渐降低,在一定位置处,拉应力转变为压应力。沿焊缝方向上,板材中间区域应力值较高,两端应力较低。创新点: 采用旋转电弧NG-GTAW新工艺,能够在满足焊接热输入要求的同时,提高焊接效率,减少填充量,为核级不锈钢焊接提供了一种高效率、高质量的焊接新方法。Abstract: Narrow gap welding experiments were carried out on 321 stainless steel for nuclear plants by the novel rotating arc NG-GTAW process. According to the actual welding requirements of 321 stainless steel, the heat input was strictly controlled below 10 kJ/cm, and welded joint with good sidewalls fusion and no obvious defects was obtained. The temperature field and residual stress field distribution of the rotating arc NG-GTAW process were studied, and it was found that during the filling welding process, the highest temperature near the weld reached 600 ℃, at this time, the austenitic stainless steel was in the sensitization temperature range, staying at this temperature for a long time might cause the corrosion resistance of stainless steel to decrease. In the direction perpendicular to the weld, the area near the weld appeared tensile stress, and the stress value was slightly higher than the yield strength of the material. As the distance from the weld increased, the stress value gradually decreased. At a certain location, the tensile stress transformed into a compressive stress. In the direction parallel to the weld, the stress value was higher in the middle area of the plate, and which was lower at both ends.Highlights: The novel rotating arc NG-GTAW process could not only meet the welding heat input requirements, but also improve welding efficiency and reduce the amount of filling, which provided a high-efficiency and high-quality welding method for nuclear-grade stainless steel welding.
-
Keywords:
- 321 stainless steel /
- NG-GTAW /
- rotating arc /
- temperature field /
- residual stress field
-
-
[1] 梁艳. 321含钛奥氏体不锈钢产品的开发[D]. 兰州:兰州理工大学硕士学位论文, 2017. [2] 刘鸽平, 戈军委, 陈玉华, 等. 321不锈钢薄板激光微焊接接头组织性能研究[J]. 现代焊接, 2012(01):25-27. [3] Tarng Y S, Yang W H. Optimisation of the weld bead geometry in gas tungsten arc welding by the Taguchi method [J]. International Journal of Advanced Manufacturing Technology, 1998,14(8):549-554. [4] 徐望辉, 杨清福, 肖逸峰. 窄间隙焊接侧壁熔合控制技术的研究现状[J]. 精密成形工程, 2020,12(04):47-54. [5] 王克亮. 激光电弧复合焊接数值模拟[D].长春:长春理工大学硕士学位论文, 2007. [6] 朱政强, 陈立功, 徐济进, 等. 厚板窄间隙多道埋弧焊温度和残余应力分布[J]. 机械工程学报, 2007,43(2):225-229. [7] Al-Karawi J, Schmidt J. Application of infrared thermography to the analysis of welding processes[C]//Belgium, 7th international Conference on Quantitative Infrared Thermography, 2004:1-6. [8] 卜一之, 吴亚坤, 胡广瑞, 等. 纵肋与横隔板新型构造细节焊接残余应力分布研究[J]. 桥梁建设, 2020, 50(6): 39-45. [9] 杜峥, 黄蓝林. 1Cr18Ni9Ti钢的焊接残余应力及其测定[J]. 石油化工设备, 1985, 14(7): 35-40. [10] Vemanaboina H, Edison G, Akella S. Validation of residual stress distributions in multipass dissimilar joints for GTAW process[J]. Journal of Engineering Science and Technology, 2019,14(5): 2964-2978. [11] 刘紫阳. 基于APDL语言T型接头双侧同步建模及在钢结构变形预测中应用研究[D].重庆:重庆交通大学硕士学位论文, 2015. [12] 靳树强, 马风辉. 低温用碱性不锈钢焊条E308L-15的研制[J]. 焊接, 2020(3): 62-64. -
期刊类型引用(6)
1. 李乘安,冯道臣,章霖,郑文健,程茂,鲁显京,杨建国. TP347H不锈钢焊接接头敏化特性分析. 焊接学报. 2024(01): 64-72+133 . 百度学术
2. 喻伟,高延峰. 基于焊枪摆动和电弧旋转的对接焊缝偏差识别. 黑龙江工程学院学报. 2024(01): 1-8 . 百度学术
3. 胡继宏. 铜火法精炼氧化还原终点实践. 有色矿冶. 2023(03): 38-40+65 . 百度学术
4. 王珏,刘松良,宋体杰,于妍妍,卢增威,赵政鑫,李辉,刘恩泽. 1Cr18Ni9Ti不锈钢氮气瓶支架断裂原因分析. 有色矿冶. 2023(03): 50-51+44 . 百度学术
5. 罗雨,吉天亮,高萌萌,王东尧. X65管线钢窄坡口旋转电弧焊焊接工艺与性能. 焊接. 2023(07): 26-33 . 本站查看
6. 黄菁,孙宇峰,方超,卫靖,刘劲. 聚变堆用奥氏体不锈钢不同激光输出模式熔丝特征. 焊接. 2022(07): 28-33+39 . 本站查看
其他类型引用(1)
计量
- 文章访问数: 29
- HTML全文浏览量: 8
- PDF下载量: 23
- 被引次数: 7