基于BP神经网络的电弧熔丝增材制造数据库系统
Database system of wire and arc additive manufacturing based on BP neural network
-
摘要: 通过对电弧熔丝增材制造(Wire and arc additive manufacturing,WAAM)单道焊缝试验数据的分类整理,分析用户需求和使用需要,基于python编程语言下的Django框架,采用B/S架构开发了一个电弧熔丝增材制造数据库系统。试验结果表明,该系统采用数据库与算法预测模型结合的方式开发而成,主要设置了用户权限管理、基本打印数据和焊缝形貌预测三大模块,具有存储扩展打印试验数据功能和预测未知工艺参数下焊缝形貌的功能。不同的打印工艺方法引入不同的BP神经网络结构,使用时数据库系统自动读取库内已有的算法模型或根据已有的试验数据训练新的模型,之后录入试验数据会自动对模型重新训练,实现随数据库内试验数据扩展或修正自动适应的参数预测,能够预测未知工艺参数下的焊缝形貌尺寸。最后,基于MIG工艺设计了1组验证试验对数据库的预测功能效果进行检验,熔宽预测误差为1.3%,余高预测误差为1.5%,说明了数据库系统预测功能的可行性。创新点: 将传统数据库的数据分类存储功能与预测算法相结合,充分发挥了已有试验数据的价值,并且集成了不同试验材料、焊接工艺方法等数据构建算法模型,实现了多种试验条件、焊接工艺方法下的焊接工艺参数预测功能。Abstract: Based on the classification of single pass weld experiments data of wire arc additive manufacturing, this paper analyzes the needs of users and uses them. Based on the Django framework under python programming language, a database system of wire and arc additive manufacturing is developed with B/S architecture. The system is developed by the combination of database and algorithm prediction model. It mainly sets three modules: user authority management, basic experiments data management and weld geometry prediction. It has the function of storing and expanding printing experiment data and predicting weld geometry under unknown welding process parameters. Different printing process methods introduce different BP neural network structures. When in use, the database system automatically reads the existing algorithm model in the database or trains a new model according to the existing experimental data. After entering the experimental data, the model will be retrained automatically, so as to realize the parameter prediction automatically adapted with the expansion or correction of the experimental data in the database, it can predict the weld geometry and size under unknown process parameters. Finally, a set of validation tests are designed based on MIG process to test the effect of the prediction function of the database. The prediction error of melt width is 1.3% and the prediction error of reinforcement is 1.5%, which shows the feasibility of the prediction function of the database system.Highlights: This paper combines the data classification and storage function of the traditional database with the prediction algorithm, gives full play to the value of the existing experimental data, integrates the data of different experimental materials and welding process methods, constructs the algorithm model, and realizes the prediction function of welding process parameters under various experimental conditions and welding process methods.
-
-
[1] Xiong J, Zhang G, Hu J, et al. Bead geometry prediction for robotic GMAW-based rapid manufacturing through a neural network and a second-order regression analysis[J]. Journal of Intelligent Manufacturing, 2014, 25(1):157-163. [2] 胡志鹏. 基于B/S模式的焊接工艺管理系统[D]. 南昌:南昌航空大学, 2012. [3] 荣佑珍, 刘仁培, 魏艳红. 航空专用焊接数据库及专家系统[J]. 航空制造技术, 2017(12):43-47. [4] 陈振林, 张玉莲, 苑兴楠, 等. 航空发动机焊接工艺资源数据库系统开发[J]. 机械制造文摘——焊接分册, 2020(4):1-5. [5] 张兆栋, 冯允宣, 祝美丽, 等. 基于BP神经网络的中厚板焊接数据库系统设计[J]. 焊接设备与材料, 2021, 50(5):107-110. [6] 冯允宣. 中厚板高效平位置焊接工艺研究及焊接数据库的建立[D]. 大连:大连理工大学, 2021. [7] Hu Z, Qin X, Li Y, et al. Welding parameters prediction for arbitrary layer height in robotic wire and arc additive manufacturing[J]. Journal of Mechanical Science and Technology, 2020, 34(4): 1683-1695. [8] Xia C, Pan Z, Polden J, et al. Modelling and prediction of surface roughness in wire arc additive manufacturing using machine learning[J]. Journal of Intelligent Manufacturing, 2022, 33(5): 1467-1482. [9] 刘晶东, 赵栋梁, 刘达. 基于多态的自然资源数据库研究[J]. 测绘与空间地理信息, 2020, 43(S1):68-69. [10] 王建辉, 冉金鑫, 沈莹莹, 等. 基于GA-ADAM优化算法的BP神经网络农业灌水量预测模型[J]. 中国农村水利水电, 2022(4):138-143. -
期刊类型引用(2)
1. 曾权,李鑫,王克鲁,鲁世强,刘杰,黄文杰,周潼,汪增强. 基于GA-BP和PSO-BP神经网络的SLM GH3625高温合金残余应力预测研究. 塑性工程学报. 2024(03): 193-199 . 百度学术
2. 王凯,卢楚文,易江龙,房卫萍,牛犇. 基于BAS算法优化的电弧增材制造焊道尺寸预测. 精密成形工程. 2024(04): 190-199 . 百度学术
其他类型引用(5)
计量
- 文章访问数: 53
- HTML全文浏览量: 11
- PDF下载量: 38
- 被引次数: 7