Interfacial microstructure and mechanical properties of K417G superalloy brazed with BNi-5 brazing filler metal
-
摘要:
K417G镍基高温合金具有优异的高温力学性能,可应用于航空发动机热端部件的制造中。采用BNi-5镍基钎料开展了K417G合金钎焊接头的研究,分析了不同保温时间对钎焊接头微观组织演变和接头高温力学性能的影响。在1160 ℃保温15 min条件下,K417G合金接头界面处物相主要由γ + γ'相、富Ti碳化物相和(Ni,Cr)3Si相等物相组成。随着保温时间的进一步延长,界面反应和元素扩散更为充分;同时接头中的硅化物相分布呈分散趋势,物相尺寸得到细化。1160 ℃ × 30 min条件下获得的接头950 ℃平均抗拉强度为412 MPa。
Abstract:K417G nickel-based superalloy has excellent high-temperature mechanical properties and can be applied in the manufacturing of hot end components of aircraft engines. Brazed joints of K417G alloy were studied by BNi-5 nickel-based brazing filler metal. Effects of different holding time on microstructure evolution and high-temperature mechanical properties of brazed joints were analyzed. At 1160 ℃ for 15 mins, phases at interface of K417G alloy brazed joints were mainly composed of γ + γ' phase, Ti-rich carbide phase and (Ni,Cr)3Si phase. With the further extension of holding time, interfacial reaction and element diffusion became more sufficient. Meanwhile, distribution of silicide phase in brazed joints showed a dispersion trend, and phase size was refined. At 1 160 ℃ for 30 mins, average tensile strength of brazed joints at 950 ℃ was 412 MPa.
-
Keywords:
- superalloy /
- brazing /
- microstructure /
- high-temperature mechanical properties
-
表 1 K417G高温合金成分(质量分数,%)
Co Cr Mo Al Ti Fe V C Ni 9~11 8.5~9.5 2.5~3.5 4.8~5.7 4.1~4.7 ≤1.0 0.6~0.9 0.13~0.22 余量 表 2 BNi-5钎料化学成分(质量分数,%)
Cr Si B C Ni 18.5~19.5 9.75~10.50 ≤0.03 ≤0.06 余量 表 3 图2b中钎焊接头区域各微区能谱分析结果
微区 元素含量(原子分数,%) 推测物相 Al Si Ti V Cr Co Ni Mo 1 15.18 0.21 5.53 0.63 9.88 8.67 58.00 1.90 母材γ + γ′相 2 0.07 0.19 73.67 3.49 1.45 0.12 1.86 19.15 富Ti碳化物相 3 12.11 6.54 3.67 0.57 10.94 6.43 58.49 1.25 近缝区γ + γ′相 4 7.10 11.77 1.36 0.42 15.49 3.84 59.37 0.65 钎缝γ + γ′相 5 0.39 28.56 8.64 0.40 8.63 1.91 48.46 3.01 (Ni,Cr)3Si相 6 0.13 20.06 2.81 1.53 33.97 1.52 30.08 9.90 (Ni,Cr)3Si相 7 14.11 1.68 4.79 0.69 9.89 8.62 58.39 1.83 近缝区γ + γ′相 8 0 0.01 74.72 3.30 1.40 0.13 1.35 19.09 富Ti碳化物相 -
[1] 种润, 郭绍庆, 张文扬, 等. GH4169合金激光增材制造过程热−力发展数值模拟[J]. 焊接, 2021(3): 13 − 21. [2] 王诗洋, 刘士伟, 侯星宇, 等. 焊丝成分对镍基高温合金TIG焊焊接性的影响[J]. 焊接学报, 2023, 44(3): 31 − 36, 60. [3] Li Xiaoquan, Hao Benxing, Chen Yixin, et al. The microscopic mechanical performance for nonuniform welded joint of nickel-based alloy with nanoindentation[J]. China Welding, 2019, 28(2): 29 − 34.
[4] 李菊, 张胜, 贺建超, 等. K417G合金粉末冶金修复接头组织与力学性能分析[J]. 焊接学报, 2018, 39(2): 115 − 118. [5] 侯星宇, 孙元. 钎焊温度对CMSX-4单晶高温合金接头组织与性能的影响[J]. 焊接, 2019(1): 40 − 44. [6] Huang X, Miglietti W. Wide gap braze repair of gas turbine blades and vanes—a review[J]. Journal of Engineering for Gas Turbines and Power, 2012, 134(1): 010801. doi: 10.1115/1.4003962
[7] 程准, 李小强, 屈盛官, 等. K417G高温合金大间隙钎焊的组织演变与性能研究[J]. 稀有金属材料与工程, 2021, 50(9): 3262 − 3269. [8] 孙元, 赵旭, 苏瑾, 等. 镍基单晶高温合金钎焊接头的微观组织与性能[J]. 焊接学报, 2020, 41(7): 32 − 38. [9] Li Xiaoqiang, Cheng Zhun, Qu Shenguan, et al. Effect of filler metal on the microstructural evolution and mechanical properties of wide gap brazed K417G superalloy joints[J]. Vacuum, 2021, 184: 109967. doi: 10.1016/j.vacuum.2020.109967
[10] Cheng Zhun, Li Xiaoqiang, Wang Bin, et al. M3B2-type borides effect on the wide gap brazing of K417G alloy with mixed powder[J]. Journal of Alloys and Compounds, 2020, 821: 153431. doi: 10.1016/j.jallcom.2019.153431
[11] 李菊, 张胜, 侯金保. K417G 合金焊接修复用高温合金粉末设计与工艺[J]. 焊接学报, 2018, 39(1): 84−88. [12] 冯贞伟, 高腾飞, 邵天威, 等. C/C复合材料与镍基高温合金GH3128钎焊[J]. 焊接学报, 2015, 36(12): 105−108.